Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé (với lại mk nghĩ đề là BC=CD phải ko bn?)
Vì BC=CD => Tam giác CBD cân tại C
=> CDB=CBD
Mà CBD=ABD (do BD là tia phân giác góc B)
=> CDB=ABD
Mặt khác, hai góc trên là hai góc so le trong => AB//CD
Vậy ABCD là hình thang.
Hãy giúp mình với các bạn ơi mình cần gấp lắm
Cảm ơn trước nhé
2, vì AB=AD nên tam giác ABD cân tại A=> Góc ADB=góc ABD=(180-110)/2=35 độ.
lại có góc BDC= góc ABD=35 độ(2 góc so le =>trong)
=> góc ADB= gócBDC=35độ => DB là phân giác góc D
ta có góc ADC= góc ADB+góc BDC=35.2=70 độ. Mà góc BCD=70 độ nên góc ADC= góc BCD=> hình thang ABCD cân
.
1, vì AB=AC, AD=AE nên AB/AE = AC/AD => DE//BC (1)
xét tam giác ABD và tam giác ACE có: AD=AC, góc DAB= góc CAE( đối đỉh), AB=AC. Do đó tamgíac ABD= tan giác ACE(c.g.c) . => góc ABD= góc ACE. Mà góc ABC= góc ACB( tam giác ABC cân tại A) nên góc ABD+ góc ABC= góc ACE+ góc ACB<=> góc DBC= góc ECB(2) . Từ 1 và 2 suy ra tứ giác ABCD là hìh thang cân
a) Vì AD là phân giác của BAC
=> góc BAD = góc HAE
Xét ΔABD và ΔAHE có
góc BAD = góc HAE
\(\widehat{ABD}=\widehat{AHE}=90^0\)
=> ΔABD đồng dạng với ΔAHE (g.g)
b) Xét ΔABH và ΔACB có
\(\widehat{AHB}=\widehat{ABC}\)
Chung góc A
=> ΔABH đồng dạng với ΔACB (g.g)
=> \(\frac{AH}{AB}=\frac{AB}{AC}\)
=> AB2 = AH.AC
Chúc bạn làm bài tốt
\(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
\(BĐVT,VT=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3+b^3=VP\)
\(\text{Vậy }a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
Câu hỏi của nguyen cao long - Toán lớp 8 - Học toán với OnlineMath
Muốn rút gọn phân thức ta làm như sau:
- phân tích cả tử và mẫu thành phân tử để tìm nhân tử chung
-chia cả tử và mẫu vs nhân tử chung
b a c e h
a, tam giác abc vuông tại a (ab2+ac2=bc2)
b, tam giác abe co bh vừa là đường cao vừa là đường trung tuyến
=> tam giác abe cân tại b => ba = be
c, tam giác ace có ch vừa là đường cao vừa là đường trung tuyến
=> tam giác ace cân tại c => đường cao ch đồng thời là đường phân giác của góc c (1)
d, tam giác abe cân tại b => đường cao bh đồng thời là đường phân giác góc b (2)
tam giác abc vuông tại a
=> goc abc + goc bca = 900 (3)
co 1 va 2, 3
=> goc ebc + goc ecb = 90 0 (4)
xet tam giac bec co (4)
=> dpcm
a: Xét ΔIKE và ΔIML có
\(\widehat{IKE}=\widehat{IML}\)
\(\widehat{KIE}=\widehat{MIL}\)
Do đó: ΔIKE\(\sim\)ΔIML
b: Xét ΔMIL và ΔMKE có
\(\widehat{IML}=\widehat{KME}\)
\(\widehat{ILM}=\widehat{KEM}\)
Do đó: ΔMIL\(\sim\)ΔMKE
Suy ra: MI/MK=ML/ME
hay \(MI\cdot ME=MK\cdot ML\)
Mày nhìn cái chóa j