K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2023

a) Ta có AB = AC và M là trung điểm của AB nên AM = MB.
Tương tự, ta có AC = AB và N là trung điểm của AC nên AN = NC.
Vậy ta có AM = MB = AN = NC.
Do đó, ta có tứ giác AMNC là hình bình hành.
Vì tứ giác AMNC là hình bình hành nên ta có CM song song với AN và BN song song với AM.
Do đó ta có CM = AN = BN.

b) Đặt I là giao điểm của tia phân giác của góc BAC với BC.
Ta cần chứng minh AI là tia phân giác của góc BAC.
Ta có AB = AC và M là trung điểm của AB nên AM = MB.
Vì AI là tia phân giác của góc BAC nên ta có góc BAI = góc IAC.
Vì AM = MB nên ta có góc BAM = góc ABM.
Do đó ta có góc BAI = góc IAC = góc BAM = góc ABM.
Do đó, ta có tứ giác ABMI là tứ giác cân.
Do đó ta có AI là tia phân giác của góc BAC.

26 tháng 7 2023

a) M, N là trung điểm của AB, AC

Suy ra MN song song BC

mà Góc ABC = Góc ACB (AB=AC nên tam giác ABC cân tại A)

Suy ra MNBC là hình thang cân

Suy ra CM=BN

b) Tam giác ABC cân tại A nên AI là phân giác, trung tuyến, đường cao

23 tháng 1 2019

a) ta có: AM = AN ( = 1/2AB = 1/2AC)

=> AMN cân tại A

b) Xét tg ABN và tg ACM

có: AB = AC

^A chung

AN = AM ( = 1/2AB = 1/2AC)

=> tg ABN = tg ACM (c-g-c)

=> BN = CM

c) Xét tg ABC
có: BN cắt CM tại I

=> AI là đường trung tuyến của BC

=> AI là tia pg ^A ( tg ABC cân tại A)

d) ta có: tg ABC cân tại A

AI là đường phân giác

=> AI là đg cao

\(\Rightarrow AI\perp BC\)

ta có: tg AMN cân tại A

AI là đường cao

=> AI vuông góc với MN

...

hình tự vẽ

31 tháng 12 2017

A B C M I F E

Thông cảm hiình hơi xấu 

Kẻ CI //AB ( I thuộc EF)

xét \(\Delta BEMva\Delta CIM\) có 

\(\hept{\begin{cases}MC=BM\\\widehat{MBE}=\widehat{MCI}\left(sole\right)\\\widehat{IMC}=\widehat{EMD}\left(doi-dinh\right)\end{cases}\Rightarrow\Delta BEM=\Delta CIM\left(g-c-g\right)}\)

=>BE=CI  (1)           

và \(\widehat{AEM}=\widehat{CIF}\) (đồng vị )

mặt khác, Xét tam giác AEF có phân giác đồng thời là đường cao => tam giác AEF cân tại A => góc AEF = góc AFE 

=> góc AFE= góc CIF => tam giác CIF cân tại C => CI=CF(2) 

Từ (1) và (2) => BE=CF(ĐpcM)

13 tháng 1 2016

A B C M N I

a/. Xét \(\Delta BNC\)và \(\Delta CMB\), có:

BM = CN = AB/2 (vì AB=AC do tam giác ABC cân tại A)

và: góc B = Góc C (tam giác ABc cân tại A)

BC cạnh chung 

Vậy tam giác BNC = tam giác CMB (c.g.c)

=> NC = MB (2 cạnh tương ứng =)

b/. Vì tam giác BNC = tam giác CMB => góc NBC = góc MCB (2 góc tg ứng =)

=> tam giác CIB cân tại I do góc NBC = góc MCB (2 góc ở đáy =)

c/. Xét tam giác BAI và tam giác CAI, có:

AB = AC (tam giác ABC cân tại A)

và: AI canh chung

và: IB = IC (tam giác IBC cân tại B)

=> tam giác BAI = tam giác CAI (c.c.c)

=> góc BAI = góc CAI (2 góc tg ứng =)

mà tia AI nằm giauwx 2 tia AB và AC 

Vậy AI là tia phân giác của góc A trong ta giác ABC

 

30 tháng 11 2023

Sửa đề: Vuông góc với AC,AP tại N,P

a: Xét ΔBPI vuông tại P và ΔBMI vuông tại M có

BI chung

\(\widehat{PBI}=\widehat{MBI}\)

Do đó: ΔBPI=ΔBMI

=>BP=BM

b: Xét ΔIMC vuông tại M và ΔINC vuông tại N có

CI chung

\(\widehat{MCI}=\widehat{NCI}\)

Do đó: ΔIMC=ΔINC

=>IM=IN

c: ΔMCI=ΔNCI

=>MC=CN

BP+CN

=BM+MC

=BC

d: ΔBPI=ΔBMI

=>IP=IM

mà IM=IN

nên IP=IN

Xét ΔAPI vuông tại P và ΔANI vuông tại N có

AI chung

IP=IN

Do đó: ΔAPI=ΔANI

=>\(\widehat{PAI}=\widehat{NAI}\)

=>AI là phân giác của \(\widehat{BAC}\)

12 tháng 2 2019

Anh tự kẻ hình : 

a, xét tam giác ABE và tam giác ACD có  : góc A chung

AB = AC (gt) 

AE = 1/2AC do E là trđ của AC (gt)

AD = 1/2AB do D là trđ của AB (gt) 

=> AD = AE

=> tam giác ABE và tam giác ACD (c - g - c)

b,tam giác ABE và tam giác ACD (Câu a) 

=> BE = CD (đn) 

12 tháng 2 2019

A B C D E K

Cm: Ta có: AB = AD + DB

                 AC = AE + EC 

Và AD = DB (gt); AE = EC (gt); AB = AC

=> AD = DB = AE = EC

Xét t/giác ABE và t/giác ACD

có AB = AC (gt)

 góc A : chung

AE = AD (cmt)

=> t/giác ABE = t/giác ACD (c.g.c)

b) Ta có: t/giác ABE = t/giác ACD (cmt)

=> BE = CD (hai cạnh tương ứng)

c) Ta có: t/giác ABE = t/giác ACD (cmt)

=> góc ABE = góc ACD (hai góc tương ứng)

=> góc ADC = góc AEB (hai góc tương ứng)

Mà góc ADC + góc CDB = 1800

      góc AEB + góc BEC = 1800

=> góc CDB = góc BEC 

Xét t/giác BDK và t/giác CEK

có góc KDB = góc KEC (cmt)

  DB = EC (cmt)

  góc DBK = góc ECK (cmt)

=> t/giác BDK = t/giác CEK (g.c.g)

=> KB = KC (hai cạnh tương ứng)

=> t/giác KBC là t/giác cân tại K

c) Xét t/giác ABK và t/giác ACK

có AB = AC (gt)

 BK = KC (cmt)

 AK : chung

=> t/giác ABK = t/giác ACK (c.c.c)

=> góc BAK = góc KAC (hai góc tương ứng)

=> AK là tia p/giác của góc BAC