K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
18 tháng 4 2019

a) + ΔADB ∼ ΔAEC ( g.g )

\(\Rightarrow\frac{AD}{AB}=\frac{AE}{AC}\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\)

+ ΔADE ∼ ΔABC ( c.g.c )

b) + AC // MH \(\Rightarrow\frac{AH}{AB}=\frac{MC}{CB}\)

+ AB // MK \(\Rightarrow\frac{CK}{AC}=\frac{MC}{CB}\)

\(\Rightarrow\frac{CK}{AC}-\frac{AH}{AB}=0\)

\(\Rightarrow\left(\frac{CK}{AC}+1\right)-\frac{AH}{AB}=1\)

\(\Rightarrow\frac{AK}{AC}-\frac{AH}{AB}=1\)

2 tháng 1 2018

@Akai Haruma, @Ace Legona, @Ace Legona, @Thiên Thảo giúp mk vs!!!!

BÀI 1:Cho ABC cân tại A , Kẻ\(AH⊥BC\left(H\in BC\right)\) ,biết AB =25cm , BC = 30cm.a) TừH kẻ\(HI⊥AB\left(I\in AB\right)\) và kẻ \(ID⊥AH\left(D\in AH\right)\)Chứng minh rằng: IA.IB = AH.DHb) Tính AIBÀI 2 Cho tam giác ABC (AB>AC ; góc BAC >90o) I;Ktheo thứ tự là trung điểm của AB , AC.Các đường tròn đường kính AB và AC cắt nhau tại điểm thứ hai D;tia BA cắt đường tròn (K) tại điểm thứ hai E ,tia CA cắt đường tròn...
Đọc tiếp

BÀI 1:Cho ABC cân tại A , Kẻ\(AH⊥BC\left(H\in BC\right)\) ,biết AB =25cm , BC = 30cm.

a) TừH kẻ\(HI⊥AB\left(I\in AB\right)\) và kẻ \(ID⊥AH\left(D\in AH\right)\)

Chứng minh rằng: IA.IB = AH.DH

b) Tính AI

BÀI 2 Cho tam giác ABC (AB>AC ; góc BAC >90o) I;Ktheo thứ tự là trung điểm của AB , AC.Các đường tròn đường kính AB và AC cắt nhau tại điểm thứ hai D;tia BA cắt đường tròn (K) tại điểm thứ hai E ,tia CA cắt đường tròn (I) tại điểm thứ hai F.

a)CMR:3 điểm B;C;D thẳng hàng

b)CMR: Tứ giác BFEC nội tiếp 

c)CM:3 đường thẳng AD,BF,CE đồng quy?

BÀI 3 Cho tam giác ABC nhọn nội tiếp đường tròn (O), BD và CE là hai đường cao của tam giác , chúng cắt nhau tại H và cắt đường tròn (O) lần lượt ở D' và E'.Chứng minh :

a)Tứ giác BEDC nội tiêp 

b)DE song song D'E'

c)Cho BD cố định.Chứng minh rằng khi A di động trên cung lớn AB sao cho tam giác ABC là tam giác nhọn thì bán kính đường tròn ngoại tiếp tam giác ADE không đổi

0
22 tháng 3 2021

ko biết dâu nha

11 tháng 12 2017

A B C D E K M I H F

a) Ta thấy ngay do BD, CE là đường cao nên \(\widehat{BEC}=\widehat{BDC}=90^o\) 

Xét tứ giác AEDC có \(\widehat{BEC}=\widehat{BDC}=90^o\) nên AEDC là tứ giác nội tiếp hay A, E, D, C cùng thuộc một đường tròn.

Đường tròn cần tìm là đường tròn đường kính BC, tức là tâm đường tròn là trung điểm J của BC, bán kính là JB.

b) Xét tam giác BEC và tam giác BHM có : 

\(\widehat{BEC}=\widehat{BHM}=90^o\)

Góc B chung

\(\Rightarrow\Delta BEC\sim\Delta BHM\left(g-g\right)\)

\(\Rightarrow\frac{BE}{BH}=\frac{BC}{BM}\Rightarrow BC.BH=BE.BM\)

Ta có \(BK^2=BD^2=BH.BC=BE.EM\)   mà \(KE\perp BM\Rightarrow\widehat{BKM}=90^o\)

Vậy MK là tiếp tuyến của đường tròn tâm B.

c) 

Gọi F là giao điểm của CE với đường tròn tâm B.

Do \(BE\perp KF\)nên MB là trung trực của FK.

\(\Rightarrow\widehat{MFB}=\widehat{MKB}=90^o\Rightarrow\)tứ giác MFBH nội tiếp.

\(\Rightarrow\widehat{MHF}=\widehat{MBF}\) (Hai góc nội tiếp cùng chắn cung MF)

Ta cũng có MKHB nội tiếp nên \(\widehat{MHK}=\widehat{MBK}\)

Mà \(\widehat{MBF}=\widehat{MBK}\) nên HI là phân giác góc KHF.

Áp dụng tính chất tia phân giác ta có : \(\frac{IK}{IF}=\frac{HK}{HF}\)

Ta có \(HC\perp HI\) nên HC là tia phân giác ngoài của góc KHF.

\(\Rightarrow\frac{CK}{CF}=\frac{HK}{HF}\)

Vậy nên \(\frac{CK}{CF}=\frac{IK}{IF}\)

\(\Rightarrow\frac{CK}{CF+KF}=\frac{IK}{IF+IK}\Rightarrow\frac{CK}{\left(CE+EF\right)+\left(CE-KE\right)}=\frac{IK}{FK}\)

\(\Rightarrow\frac{CK}{2CE}=\frac{IK}{2EK}\Rightarrow CK.EK=CE.IK\)

10 tháng 12 2017

giúp mình với!!!! ai đúng mình k cho

9 tháng 1 2020

lm đc hết trừ câu c

25 tháng 7 2018

a) Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:

\(AH^2=AM\cdot AB\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:

\(AH^2=AN\cdot AC\left(2\right)\)

Từ(1) và (2) ta được: \(AM\cdot AB=AN\cdot AC\)

b) Ta có: MHNA là hình chữ nhật(pn tự cm nha cái này dễ)

\(\Rightarrow MH=AN\)

Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:

\(HN^2=AN\cdot NC\)

Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:

\(HM^2=AM\cdot MB\)

Áp dụng hệ thức lượng trong \(\Delta vAHN\), ta có:

\(AN^2+HN^2=AH^2\)

\(MH=AN\)

\(\Rightarrow MH^2+HN^2=AH^2\)

\(\Rightarrow BM\cdot MA+AN\cdot NC=BH\cdot HC\)

c) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AC^2=HC\cdot BC\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AB^2=HB\cdot BC\left(2\right)\)

Lấy (2) chia (1) ta được: \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)

d) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AC^2=HC\cdot BC\Rightarrow AC^4=HC^2\cdot BC^2\)

\(\Rightarrow AC^4=NC\cdot AC\cdot BC^2\Rightarrow AC^3=NC\cdot BC^2\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AB^2=HB\cdot BC\Rightarrow AB^4=HB^2\cdot BC^2\)

\(\Rightarrow AB^4=BM\cdot AB\cdot BC^2\Rightarrow AB^3=BM\cdot BC^2\left(2\right)\)

Lấy (2) chia (1) ta được: \(\dfrac{BM}{CN}=\left(\dfrac{AB}{AC}\right)^3\)

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A co

góc C chung

=>ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>góc CAD=góc CBE

b: Xét ΔDCE và ΔHCA có

góc C chung

góc EDC=góc AHC

=>ΔDCE đồng dạng với ΔHCA

=>DC/HC=CE/CA

mà HC/AC=AC/BC

nên DC/EC=AC/BC

mà góc DEC chung

nên ΔBEC đồng dạng với ΔADC

=>BE/AD=BC/AC

=>BE/BC=AD/AC

mà BC/AC=BA/HA

nên BE/AD=BA/HA

=>\(BE=\dfrac{BA}{HA}\cdot AD=\dfrac{a}{HA}\cdot\sqrt{AH^2+AH^2}\)

\(=a\sqrt{2}\)

c: Vì BE=a*căn 2

nên ΔABE vuông cân tại A

=>BM*BE=BA^2=BH*BC

=>BE/BH=BC/BM

=>ΔBEC đồng dạng với ΔBHM

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0