Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
@Akai Haruma, @Ace Legona, @Ace Legona, @Thiên Thảo giúp mk vs!!!!
A B C D E K M I H F
a) Ta thấy ngay do BD, CE là đường cao nên \(\widehat{BEC}=\widehat{BDC}=90^o\)
Xét tứ giác AEDC có \(\widehat{BEC}=\widehat{BDC}=90^o\) nên AEDC là tứ giác nội tiếp hay A, E, D, C cùng thuộc một đường tròn.
Đường tròn cần tìm là đường tròn đường kính BC, tức là tâm đường tròn là trung điểm J của BC, bán kính là JB.
b) Xét tam giác BEC và tam giác BHM có :
\(\widehat{BEC}=\widehat{BHM}=90^o\)
Góc B chung
\(\Rightarrow\Delta BEC\sim\Delta BHM\left(g-g\right)\)
\(\Rightarrow\frac{BE}{BH}=\frac{BC}{BM}\Rightarrow BC.BH=BE.BM\)
Ta có \(BK^2=BD^2=BH.BC=BE.EM\) mà \(KE\perp BM\Rightarrow\widehat{BKM}=90^o\)
Vậy MK là tiếp tuyến của đường tròn tâm B.
c)
Gọi F là giao điểm của CE với đường tròn tâm B.
Do \(BE\perp KF\)nên MB là trung trực của FK.
\(\Rightarrow\widehat{MFB}=\widehat{MKB}=90^o\Rightarrow\)tứ giác MFBH nội tiếp.
\(\Rightarrow\widehat{MHF}=\widehat{MBF}\) (Hai góc nội tiếp cùng chắn cung MF)
Ta cũng có MKHB nội tiếp nên \(\widehat{MHK}=\widehat{MBK}\)
Mà \(\widehat{MBF}=\widehat{MBK}\) nên HI là phân giác góc KHF.
Áp dụng tính chất tia phân giác ta có : \(\frac{IK}{IF}=\frac{HK}{HF}\)
Ta có \(HC\perp HI\) nên HC là tia phân giác ngoài của góc KHF.
\(\Rightarrow\frac{CK}{CF}=\frac{HK}{HF}\)
Vậy nên \(\frac{CK}{CF}=\frac{IK}{IF}\)
\(\Rightarrow\frac{CK}{CF+KF}=\frac{IK}{IF+IK}\Rightarrow\frac{CK}{\left(CE+EF\right)+\left(CE-KE\right)}=\frac{IK}{FK}\)
\(\Rightarrow\frac{CK}{2CE}=\frac{IK}{2EK}\Rightarrow CK.EK=CE.IK\)
a) Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:
\(AH^2=AM\cdot AB\left(1\right)\)
Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:
\(AH^2=AN\cdot AC\left(2\right)\)
Từ(1) và (2) ta được: \(AM\cdot AB=AN\cdot AC\)
b) Ta có: MHNA là hình chữ nhật(pn tự cm nha cái này dễ)
\(\Rightarrow MH=AN\)
Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:
\(HN^2=AN\cdot NC\)
Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:
\(HM^2=AM\cdot MB\)
Áp dụng hệ thức lượng trong \(\Delta vAHN\), ta có:
\(AN^2+HN^2=AH^2\)
Mà \(MH=AN\)
\(\Rightarrow MH^2+HN^2=AH^2\)
\(\Rightarrow BM\cdot MA+AN\cdot NC=BH\cdot HC\)
c) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AC^2=HC\cdot BC\left(1\right)\)
Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AB^2=HB\cdot BC\left(2\right)\)
Lấy (2) chia (1) ta được: \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
d) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AC^2=HC\cdot BC\Rightarrow AC^4=HC^2\cdot BC^2\)
\(\Rightarrow AC^4=NC\cdot AC\cdot BC^2\Rightarrow AC^3=NC\cdot BC^2\left(1\right)\)
Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:
\(AB^2=HB\cdot BC\Rightarrow AB^4=HB^2\cdot BC^2\)
\(\Rightarrow AB^4=BM\cdot AB\cdot BC^2\Rightarrow AB^3=BM\cdot BC^2\left(2\right)\)
Lấy (2) chia (1) ta được: \(\dfrac{BM}{CN}=\left(\dfrac{AB}{AC}\right)^3\)
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A co
góc C chung
=>ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>góc CAD=góc CBE
b: Xét ΔDCE và ΔHCA có
góc C chung
góc EDC=góc AHC
=>ΔDCE đồng dạng với ΔHCA
=>DC/HC=CE/CA
mà HC/AC=AC/BC
nên DC/EC=AC/BC
mà góc DEC chung
nên ΔBEC đồng dạng với ΔADC
=>BE/AD=BC/AC
=>BE/BC=AD/AC
mà BC/AC=BA/HA
nên BE/AD=BA/HA
=>\(BE=\dfrac{BA}{HA}\cdot AD=\dfrac{a}{HA}\cdot\sqrt{AH^2+AH^2}\)
\(=a\sqrt{2}\)
c: Vì BE=a*căn 2
nên ΔABE vuông cân tại A
=>BM*BE=BA^2=BH*BC
=>BE/BH=BC/BM
=>ΔBEC đồng dạng với ΔBHM
a) + ΔADB ∼ ΔAEC ( g.g )
\(\Rightarrow\frac{AD}{AB}=\frac{AE}{AC}\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\)
+ ΔADE ∼ ΔABC ( c.g.c )
b) + AC // MH \(\Rightarrow\frac{AH}{AB}=\frac{MC}{CB}\)
+ AB // MK \(\Rightarrow\frac{CK}{AC}=\frac{MC}{CB}\)
\(\Rightarrow\frac{CK}{AC}-\frac{AH}{AB}=0\)
\(\Rightarrow\left(\frac{CK}{AC}+1\right)-\frac{AH}{AB}=1\)
\(\Rightarrow\frac{AK}{AC}-\frac{AH}{AB}=1\)