Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ý 1 câu a )
có ED vuông góc BC ; AH vuông góc BC => ED//AH => tam giác CDE đồng dạng vs tam giác CHA ( talet) (1)
xét tam giác CHA và tam giác CAB có CHA=CAB=90 độ ; C chung => tam giác CHA đồng dạng vs tam giác CAB ( gg) (2)
từ (1) và (2) =>tam giác CDE đồng dạng tam giác CAB ( cùng đồng dạng tam giác CHA )
có tam giác CDE đồng dạng tam giác CAB (cmt) => \(\frac{CE}{CB}=\frac{CD}{CA}\)
xét tam giác BAC và tam giác ADC có góc C chung và \(\frac{CE}{BC}=\frac{CD}{AC}\left(CMT\right)\) => tam giác BAC đồng dạng vs tam giác ADC ( trường hợp c-g-c) , mấy câu kia quên mịa nó r -.-
Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath
mình trả lời trước câu b:
Bạn c/m tam giác AHM = tam giác DHM (ccc) => HM là p/g góc AHD => góc AHM =1/2.(góc AHD) = 90/2 =45
Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath
lkjhgfgy6tyur65445676t 7 777676r64576556756777777777777/.,mnbvfggjhyjuhjtyj324345
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A co
góc C chung
=>ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>góc CAD=góc CBE
b: Xét ΔDCE và ΔHCA có
góc C chung
góc EDC=góc AHC
=>ΔDCE đồng dạng với ΔHCA
=>DC/HC=CE/CA
mà HC/AC=AC/BC
nên DC/EC=AC/BC
mà góc DEC chung
nên ΔBEC đồng dạng với ΔADC
=>BE/AD=BC/AC
=>BE/BC=AD/AC
mà BC/AC=BA/HA
nên BE/AD=BA/HA
=>\(BE=\dfrac{BA}{HA}\cdot AD=\dfrac{a}{HA}\cdot\sqrt{AH^2+AH^2}\)
\(=a\sqrt{2}\)
c: Vì BE=a*căn 2
nên ΔABE vuông cân tại A
=>BM*BE=BA^2=BH*BC
=>BE/BH=BC/BM
=>ΔBEC đồng dạng với ΔBHM