Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 + 22 + .... + 22017
=> 2S = 2 . ( 1 + 2 + 22 + ... + 22017 )
=> 2S = 2 + 22 + 23 + ... + 22018
=> S = ( 2 + 22 + 23 + ... + 22018 ) - ( 1 + 2 + 22 + .... + 22017 )
=> S = 22018 - 1 = 22016 . 22 - 1 = 22016 . 4 - 1
Mà 5.22016 > 22016 . 4 => 5 . 22016 > 22016 . 4 - 1
Vậy S < 5 . 22016
Bài làm :
S = 1 + 2 + 22 + .... + 22017
=> 2S = 2 . ( 1 + 2 + 22 + ... + 22017 )
=> 2S = 2 + 22 + 23 + ... + 22018
=> S = ( 2 + 22 + 23 + ... + 22018 ) - ( 1 + 2 + 22 + .... + 22017 )
=> S = 22018 - 1 = 22016 . 22 - 1 = 22016 . 4 - 1
Mà 5.22016 > 22016 . 4 => 5 . 22016 > 22016 . 4 - 1
Vậy S < 5 . 22016
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Ta có : 2T = 2+3/2+4/22+...+2016/22014+2017/22015
=>2T-T=1/2+1/22+1/23+...+1/22014+(2-2017/22015)
Gọi B = 1/2+1/22+1/23+...+1/22014
=>2B = 1+1/2+...+1/22013
=>2B-B=1-1/22014
=>T=1-1/22014+(2-2017/22015)
Câu 1:
\(A=27^2.32^3=\left(3^3\right)^2.\left(2^5\right)^3=3^6.2^{15}\)
\(B=6^{16}=2^{16}.3^{16}\)
Từ \(\hept{\begin{cases}2^{15}< 2^{16}\\3^6< 3^{16}\end{cases}\Leftrightarrow2^{15}.3^6< 2^{16}.3^{16}\Leftrightarrow}A< B\)
Câu 2:
\(A=1+2+2^2+2^3+...+2^{2016}\)
<=>\(2A=2\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(2A=2+2^2+2^3+2^4...+2^{2017}\)
<=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(A=2^{2017}-1< 2^{2017}=B\)
Vậy A<B
muốn viết dấu mũ như thế kia thì viết thế nào hả bạn ?
Ta có: A = 1 + 2 + 22 + 23 + .... + 22016
=> 2A = 2 + 22 + 23 + 24 + ... + 22017
=> 2A - A = (2 + 22 + 23 + 24 + ... + 22017) - (1 + 2 + 22 + 23 + .... + 22016 )
=> A = 22017 - 1
Mà 22017 - 1 > 22017 - 2 => A > B.
2A = 2+22 +...+22017
-
A=1+2+...+22016
--------------------------------
A = 22017 - 1 < 22017 = B
=> A<B
học tốt
A=1+21+22+23+....+22016
A=20+21+22+23+...+22016
2A=2.(20+21+22+23+...+22016)
2A=21+22+23+24+...+22016
2A-A=(21+22+23+24+...+22016)-(20+21+22+23+...+22016)
A=22017-20
A=22017-20
B=22017
=>22017-20<22017
Nên A=22017-20<B=22017
Chúc bn học tốt
Vì \(2016^{2017}>2016^{2017}-3\)
\(\Rightarrow B>\frac{2016^{2017}}{2016^{2017}-3}>\frac{2016^{2017}+2}{2016^{2017}-3+2}=\frac{2016^{2017}+2}{2016^{2017}-1}=A\)
vậy \(A< B\)
Ta có :
\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}\)
\(\frac{1}{2}T=\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2017}{2^{2017}}\)
\(T-\frac{1}{2}T=\left(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}\right)-\left(\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2017}{2^{2017}}\right)\)
\(\frac{1}{2}T=1+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}-\frac{2}{2^2}-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{2017}{2^{2017}}\)
\(\frac{1}{2}T=1+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{2017}{2^{2016}}-\frac{2016}{2^{2016}}\right)-\frac{2017}{2^{2017}}\)
\(\frac{1}{2}T=1+\left(\frac{1}{2^2}+\frac{1}{3^3}+...+\frac{1}{2^{2016}}\right)-\frac{2017}{2^{2017}}\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^3}+...+\frac{1}{2^{2016}}\)
\(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(A=\frac{1}{2}-\frac{1}{2^{2016}}\)
Mà \(\frac{1}{2^{2016}}>0\)
\(\Rightarrow\)\(A=\frac{1}{2}-\frac{1}{2^{2016}}< \frac{1}{2}\)
\(\Leftrightarrow\)\(1+A-\frac{2017}{2^{2017}}< 1+\frac{1}{2}-\frac{1}{2^{2016}}-\frac{2017}{2^{2017}}\)
\(\Leftrightarrow\)\(\frac{1}{2}T< \frac{3}{2}-\left(\frac{1}{2^{2016}}+\frac{2017}{2^{2017}}\right)\)
Mà \(\frac{1}{2^{2016}}+\frac{2017}{2^{2017}}\)
\(\Rightarrow\)\(\frac{1}{2}T< \frac{3}{2}\)
\(\Rightarrow\)\(T< \frac{3}{2}.2\)
\(\Rightarrow\)\(T< 3\)
Vậy \(T< 3\)
Chúc bạn học tốt ~
\(T< 3\)