K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

\(P=xy+x+y\le\dfrac{x^2+y^2}{2}+\sqrt{2\left(x^2+y^2\right)}\)

\(=\dfrac{2017}{2}+\sqrt{2.2017}=\dfrac{2017}{2}+\sqrt{4034}\)

15 tháng 9 2019

Hinh nhu de bai sai thi phai

15 tháng 9 2019

đề đúng rồi bạn ơi

gán làm giúp mình nha.cảm ơn bạn

3 tháng 12 2016

Ta có: \(P=\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2xy}{x-y}\)

\(=x-y+\frac{16}{x-y}\ge2.4=8\)

3 tháng 12 2016

Đặt \(t=x^2+y^2\) thì ta có : 

\(P^2=\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}=\frac{t^2}{t-16}=\frac{1}{\frac{t-16}{t^2}}=\frac{1}{-\frac{16}{t^2}+\frac{1}{t}}=\frac{1}{-16\left(\frac{1}{t}-\frac{1}{32}\right)^2+\frac{1}{64}}\ge\frac{1}{\frac{1}{64}}=64\)

\(\Rightarrow P\ge8\). Đẳng thức xảy ra khi \(\hept{\begin{cases}x^2+y^2=32\\xy=8\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2+2\sqrt{2}\\y=-2+2\sqrt{3}\end{cases}}\)

1 tháng 4 2018

Ta có:

\(GT\Leftrightarrow2-3x^2=2\left(y+z\right)^2-2yz\ge2\left(y+z\right)^2-\dfrac{1}{4}.2\left(y+z\right)^2=\dfrac{3\left(y+z\right)^2}{2}\)(AM-GM)

\(\Rightarrow4-6x^2\ge3\left(y+z\right)^2\Leftrightarrow4\ge3\left[2x^2+\left(y+z\right)^2\right]\)

Áp dụng BĐT bunyakovsky: \(\left(1+2\right)\left[2x^2+\left(y+z\right)^2\right]\ge2\left(x+y+z\right)^2\)

\(\Rightarrow\left(x+y+z\right)^2\le2\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

Vậy \(P_{Min}=-\sqrt{2}\) khi \(x=y=z=\dfrac{-\sqrt{2}}{3}\);\(P_{Max}=\sqrt{2}\)khi \(x=y=z=\dfrac{\sqrt{2}}{3}\)

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

19 tháng 12 2018

\(M=\sqrt{3}xy+y^2=\frac{1}{2}\left(x^2+2\sqrt{3}xy+3y^2\right)-\frac{1}{2}x^2-\frac{1}{2}y^2\)

\(=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}\).

Nên GTNN của M là \(-\frac{1}{2}\) đạt được khi  \(x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}\)

 +,Với \(y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}\)

+,Với \(y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}\)

Ta lại có:\(M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}\)

Nên GTLN của M là \(\frac{3}{2}\) đạt được khi \(\sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}\)

 +,Với \(x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}\)

 +,Với \(x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}\)

19 tháng 12 2018

M=3xy+y2=21​(x2+23​xy+3y2)−21​x2−21​y2

=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}=21​(x+3​y)2−21​≥−21​.

Nên GTNN của M là -\frac{1}{2}−21​ đạt được khi  x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}x=−3yx2=3y2⇒4y2=1⇒y=±21​

 +,Với y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}y=21​⇒x=−23​​

+,Với y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}y=−21​⇒x=23​​

Ta lại có:M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}M=3xy+y2≤23x2+y2​+y2=23x2+3y2​=23​

Nên GTLN của M là \frac{3}{2}23​ đạt được khi \sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}3x=y⇒3x2=y2⇒4x2=1⇒x=±21​

 +,Với x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}x=21​⇒y=23​​

 +,Với x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}x=−21​⇒y=−23​​