Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{x^4}{a}+\frac{y^4}{b}\right)(a+b)\geq (x^2+y^2)^2=1\)
\(\Rightarrow \frac{x^4}{a}+\frac{y^4}{b}\geq \frac{1}{a+b}\)
Dấu "=" xảy ra khi \(\frac{x^2}{a}=\frac{y^2}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow \frac{x^{2000}}{a^{1000}}+\frac{y^{2000}}{b^{1000}}=\left(\frac{x^2}{a}\right)^{1000}+\left(\frac{y^2}{b}\right)^{1000}\)
\(=\frac{1}{(a+b)^{1000}}+\frac{1}{(a+b)^{1000}}=\frac{2}{(a+b)^{1000}}\)
TA CÓ:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{z}{x+y+z}\right)=0\)
\(\Leftrightarrow\left(\frac{x+y}{xy}\right)+\left(\frac{x+y}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)+\left(\frac{1}{xy}-\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(z\left(x+y+x\right)-xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\Rightarrow x=-y,y=-z,z=-x\)
\(\Rightarrow\hept{\begin{cases}x=0,y=0,z=1\Rightarrow M=1\\x=0,y=1,z=0\Rightarrow M=1\\x=1,y=0,z=0\Rightarrow M=1\end{cases}}\)
x2+y2=1
(x2+y2)2=1
x4+y4+2x2y2=1
thay vào bt ta dc
x4/a+y4/b=x4+y4+2x2y2/a+b
x4b/ab+y4a/ab=x4+y4+2x2y2/a+b
x4b+y4a/a+b=x4+y4+2x2y2/a+b
nhân chéo lên rồi rút gọn ta dc
(x2b-y2a)2=0
x2b=y2a
Giải
Đặt x^1000 =a, y^1000=b
ta có a+b=6912
a^2+b^2=3376244
cần tính a^3+b^3= (a+b)(a^2-ab+b^2). chỉ còn thiếu ab nữa xong.
mà ab= [(a+b)^2 -(a^2+b^2)]/2.
Vậy a^3+b^3= (a+b) [ 3(a^2+b^2)/2 + (a+b)^2 /2 ]. thay vào là tính dc
Bạn cũng thi casio à? Mình cũng thi, lúc sáng mới khảo sát trúng bài này đơ luôn