\(x^{672}\) + \(y^{672}\) = 6,912 và
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

Giải
Đặt x^1000 =a, y^1000=b
ta có a+b=6912
a^2+b^2=3376244
cần tính a^3+b^3= (a+b)(a^2-ab+b^2). chỉ còn thiếu ab nữa xong.
mà ab= [(a+b)^2 -(a^2+b^2)]/2.
Vậy a^3+b^3= (a+b) [ 3(a^2+b^2)/2 + (a+b)^2 /2 ]. thay vào là tính dc

8 tháng 10 2017

Bạn cũng thi casio à? Mình cũng thi, lúc sáng mới khảo sát trúng bài này đơ luôn khocroi

14 tháng 12 2016

Ta có

\(1\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(1\Leftrightarrow x^2+\frac{\left(b^2+c^2\right)x^2}{a^2}+y^2+\frac{\left(a^2+c^2\right)y^2}{b^2}+z^2+\frac{\left(a^2+b^2\right)z^2}{c^2}=x^2+y^2+z^2\)

\(\Leftrightarrow\frac{\left(b^2+c^2\right)x^2}{a^2}+\frac{\left(c^2+a^2\right)y^2}{b^2}+\frac{\left(a^2+b^2\right)z^2}{c^2}=0\)

Ta thấy rằng cả 3 phân số đó đều \(\ge0\)nên tổng 3 phân số sẽ \(\ge0\)

Dấu = xảy ra khi x = y = z = 0

Với x = y = z = 0 thì

\(\frac{x^{2016}}{a^{2016}}+\frac{y^{2016}}{b^{2016}}+\frac{z^{2016}}{c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\Leftrightarrow\frac{0}{a^{2016}}+\frac{0}{b^{2016}}+\frac{0}{c^{2016}}=\frac{0+0+0}{a^{2016}+b^{2016}+c^{2016}}\)

\(\Leftrightarrow0=0\)(đúng)

\(\Rightarrow\)ĐPCM

21 tháng 6 2017

Do x=y=z=-1 nên ;

B=1+1+1=3;

Ban k nha...còn khi nào tìm đc lờ giải mình báo cho bạn..

2 tháng 8 2019

Ta có: x2+y2+z2=xy+yz+zx (gt)

\(\Leftrightarrow\)2x2+2y2+2z2=2xy+2yz+2zx

\(\Leftrightarrow\)x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=0

\(\Leftrightarrow\)(x-y)2+(y-z)2+(z-x)2=0

\(\Leftrightarrow\)x=y,y=z,z=x

\(\Leftrightarrow\)x=y=z

Khi đó:x2016+y2016+z2016=32017

\(\Leftrightarrow\)3.x2016=32017

\(\Leftrightarrow\)x2016=32016

\(\Leftrightarrow\)x=\(\pm\)3

Vậy:x=y=z=3 hoặc x=y=z=-3

2 tháng 8 2019

Ta có : \(x^2+y^2+z^2=xy+yz+xz\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\Leftrightarrow x=y=z\)

Mà \(x^{2016}+y^{2016}+z^{2016}=3^{2017}\)

\(x^{2016}=y^{2016}=z^{2016}=\frac{3^{2017}}{3}=3^{2016}\)

\(\Rightarrow x=y=z=\sqrt[2016]{3^{2016}}=3\)

18 tháng 4 2017

mk mà đúng thì nhớ k cho mk nh bạn giải như vầy nè

Với x;y dương ta có:F=\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\left(\frac{a}{b+c}+\frac{c}{d+a}\right)+\left(\frac{b}{c+d}+\frac{d}{a+b}\right)\)

=\(\frac{a\left(a+d\right)+c\left(b+c\right)}{\left(a+d\right)\left(b+c\right)}\)+\(\frac{b\left(a+b\right)+d\left(d+c\right)}{\left(a+b\right)\left(d+c\right)}\)\(\ge\)\(\frac{a^2+c^2+ad+bc}{\frac{1}{4}\left(a+b+c+d\right)^2}\)+\(\frac{b^2+d^2+ab+cd}{\frac{1}{4}\left(a+b+c+d\right)^2}\)

   =\(\frac{4\left(a^2+b^2+c^2+d^2+ab+ad+bc+cd\right)}{^{\left(a+b+c+d\right)^2}}\)                                                        (áp dụng bđt xy\(\le\frac{1}{4}\left(x+y\right)^2\))mặt khác có 2(\(a^2 +b^2+c^2+d^2+ab+ac+bc+cd\))-\(\left(a+b+c+d\right)^2\)=\(a^2+b^2+c^2+d^2-2ac-2bd\)=\(\left(a-c\right)^2+\left(b-d\right)^2\ge0\)suy ra F\(\ge\)2, dấu ''=''xảy ra khi và chỉ khi a=c ;b=d

Aps dụng với a=2016;b=x;c=y;d=2015ta có\(\frac{2016}{x+y}+\frac{x}{y+2015}+\frac{y}{4031}+\frac{2015}{x+2016}=2\)

nên x; y cần tìm là 2015 và 2016

13 tháng 4 2017

Bạn xem đề thử nguyên hay nguyên dương nhé. Nguyên dương thì còn thấy đường làm chứ nguyên thì bó tay.

AH
Akai Haruma
Giáo viên
25 tháng 9 2018

Lời giải:

Từ điều kiện đề bài suy ra:

\(\left\{\begin{matrix} x^{2016}+y^{2016}-x^{2017}-y^{2017}=0\\ x^{2017}+y^{2017}-x^{2018}-y^{2018}=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x^{2016}(1-x)+y^{2016}(1-y)=0\\ x^{2017}(1-x)+y^{2017}(1-y)=0\end{matrix}\right.\)

\(\Rightarrow x^{2016}(1-x)(1-x)+y^{2016}(1-y)(1-y)=0\) (trử theo vế)

\(\Leftrightarrow x^{2016}(1-x)^2+y^{2016}(1-y)^2=0\)

Dễ thấy \(x^{2016}(1-x)^2; y^{2016}(1-y)^2\geq 0\) nên để tổng của chúng bằng $0$ thì:
\(x^{2016}(1-x)^2=y^{2016}(1-y)^2=0\)

\(\Rightarrow (x,y)=(0,1), (0,0), (1,1)\) và hoán vị của nó

Thử lại vào đk ban đầu thấy thỏa mãn

Do đó: \(A=x^{2019}+y^{2019}\in\left\{0; 1;2\right\}\)

25 tháng 9 2018

\(x^{2016}+y^{2016}=x^{2017}+y^{2017}=x^{2018}+y^{2018}\left(x,y\ge0\right)\)

\(\Rightarrow x=y=1\)

\(\Rightarrow A=1^{2019}+1^{2019}\)

\(\Rightarrow A=2\)