Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{x}{z}=\frac{z}{y}\)
\(\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2\)
\(\Rightarrow\frac{x^2}{z^2}=\frac{z^2}{y^2}\)
Áp dụng tích chất dãy tỉ số bằng nhau ta được:
\(\frac{x^2}{z^2}=\frac{z^2}{y^2}=\frac{x^2+z^2}{z^2+y^2}\left(1\right)\)
Mà \(\frac{x^2}{z^2}=\frac{x}{z}.\frac{x}{z}=\frac{x}{z}.\frac{z}{y}=\frac{x}{y}\left(2\right)\) (vì \(\frac{x}{z}=\frac{z}{y}\))
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra:
\(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\)
Vậy với \(\frac{x}{z}=\frac{z}{y}\)thì \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\)
Ta có: \(\frac{x}{z}=\frac{z}{y}\)=>\(z^2=xy\)
Thay \(z^2=xy\) vào \(\frac{x^2+z^2}{y^2+z^2}=\frac{x^2+xy}{y^2+xy}=\frac{x\cdot\left(x+y\right)}{y\cdot\left(y+x\right)}=\frac{x}{y}\)(điều phải chứng minh)
=>z^2=xy(t/c)
=>x/y=x(x+y)/y(x+y)
=(x^2+xy)/(y^2+xy))
=(x^2+z^2)/(y^2+z^2)
Có\(\frac{x}{z}=\frac{z}{y}\)⇒\(xy=\text{x}^{2}\)
⇒\(\frac{\text{x}^{2}+\text{z}^{2}}{\text{y}^{2}+\text{z}^{2}}\)=\(\frac{\text{x}^{2}+xy}{\text{y}^{2}+xy}\)=\(\frac{x(x+y)}{y(x+y)}\)=\(\frac{x}{y}\)
⇒\(\frac{\text{x}^{2}+\text{z}^{2}}{\text{y}^{2}+\text{z}^{2}}\)=\(\frac{x}{y}\)
Vậy \(\frac{\text{x}^{2}+\text{z}^{2}}{\text{y}^{2}+\text{z}^{2}}\)=\(\frac{x}{y}\)
\(\frac{x}{z}=\frac{z}{y}\)
\(\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2=\frac{x.z}{z.y}\)
\(\Rightarrow\frac{x^2}{z^2}=\frac{z^2}{y^2}=\frac{x}{y}\)(Do loại bỏ z trên tử + dưới mấy nên còn x/y)
\(\Rightarrow\frac{x^2+z^2}{z^2+y^2}=\frac{x}{y}\)
Vậy \(\frac{x^2+z^2}{z^2+y^2}=\frac{x}{y}\)
A =(x + y)(x + 2y)(x + 3y)(x + 4y) + y4
= (x + y)(x + 4y). (x + 2y)(x + 3y) + y4
= (x2 + 5xy + 4y2 )(x2 + 5xy + 6y2 )+ y4
= (x2 + 5xy + 5y2 - y2 )(x2 + 5xy + 5y2 – y2 ) + y4
= (x2 + 5xy + 5y2 )2 - y4 + y4
= (x2 + 5xy + 5y2 )2
Do x , y Z nên x2 + 5xy + 5y2 Z rròi nè **** đi
a,Ta có A=|x-1|+|x+2019|=|1-x|+|x+2019|>=|1-x+x+2019|=2020
=>A>2020
Dấu''='' xảy ra <=>(1-x)(x+2019)>0
<=>(x-1)(x+2019)<0
<=>-2019<x<1
Vậy MIN(A)=2020<=>-2019<x<1
có gì sai bạn bỏ qua nhé>3
Cho 3 số nguyên dương chứ bạn ơi !
Có : x/x+y > 0 => x/x+y > x/x+y+z
Tương tự : y/y+z > y/x+y+z ; z/z+x > z/x+y+z
=> x/x+y + y/y+z + z/z+x > x+y+z/x+y+z = 1
Lại có : x < x+y => x/x+y < 1 => 0 < x/x+y < 1 => x/x+y < x+z/x+y+z
Tương tự : y/y+z < y+x/x+y+z ; z/z+x < z+y/x+y+z
=> x/x+y + y/y+z + z/z+x < x+z+y+x+z+y/x+y+z = 2
=> ĐPCM
Tk mk nha
Đặt\(\frac{x}{y}=\frac{y}{z}=k\)\(\left(k\ne0\right)\)
Ta có \(x=ky;y=kz\)
Thay \(x=ky;y=kz\)vào \(\frac{x^2+y^2}{y^2+z^2}\)ta được
\(\frac{\left(ky\right)^2+\left(kz\right)^2}{y^2+z^2}=\frac{k^2.y^2+k^2.z^2}{y^2+z^2}=\frac{k^2.\left(y^2+z^2\right)}{y^2+z^2}=k^2\)
\(\frac{x}{z}=\frac{ky}{z}=\frac{k.k.z}{z}=k^2\)
Vì \(k^2=k^2\Rightarrow\frac{x^2+y^2}{y^2+z^2}=\frac{x}{z}\left(đpcm\right)\)