Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Nhân chéo
Bài 2:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
\(\Rightarrowđpcm\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)
\(=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}\)
\(=\dfrac{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}\)
\(=\dfrac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\)
\(\Rightarrow c=-c\)
\(\Rightarrow c+c=0\)
\(\Rightarrow2c=0\Rightarrow c=0\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(1\right)\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3\)
\(=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có:
\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)
Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
b: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
DO đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b}{c}\)
\(\Rightarrow\dfrac{b+c}{a}+1=\dfrac{c+a}{b}+1=\dfrac{a+b}{c}+1\)
\(\Rightarrow\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}=\dfrac{a+b+c}{c}\)
Từ \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\Leftrightarrow a\left(a+b+c\right)=b\left(a+b+c\right)\)
\(\Rightarrow\left(a-b\right)\left(a+b+c\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=b\\a+b+c=0\end{matrix}\right.\left(đpcm\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}=\dfrac{a+b+c-a+b-c}{a+b+c-a+b-c}=\dfrac{\left(a-a\right)+\left(c-c\right)+b+b}{\left(a-a\right)+\left(c-c\right)+b+b}=\dfrac{2b}{2b}=1\)
Nên
\(a+b+c=a+b-c\)
\(\Rightarrow a+b+c-a-b+c=0\)
\(\Rightarrow2c=0\Rightarrow c=0\)
\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)
=>(b+c)^2=(b-c)^2
=>b+c=b-c hoặc b+c=c-b
=>b=0(loại) hoặc c=0
Theo đề, ta có:
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\) và \(b\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta lại có:
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}=\dfrac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}\)
\(=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}=\dfrac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\Rightarrow c=-c\Rightarrow c-\left(-c\right)=0\)
\(\Rightarrow c+c=0\Rightarrow2c=0\Rightarrow c=0\)
Vậy \(c=0\)
~ Học tốt !~
Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
Nên \(ab+ad< ab+bc\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (1)
Lại có \(ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (2)
Từ (1), (2) và sử dụng tính chất "bắc cầu", ta được:
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
(Không dám chắc kết quả là đúng, bởi vì bạn viết đề sai rồi)
Ối nhầm đề nhé! Phải là "CMR nếu \(\dfrac{a}{b}< \dfrac{c}{d}\) thì \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
b)\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Ta có:
\(\dfrac{a+b}{c}=\dfrac{b+c}{a}\) và \(\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
\(\Rightarrow1+\dfrac{a+b}{c}=1+\dfrac{b+c}{a}\)và \(1+\dfrac{b+c}{a}=1 +\dfrac{c+a}{b}\)
\(\Rightarrow\dfrac{c}{c}+\dfrac{a+b}{c}=\dfrac{a}{a}+\dfrac{b+c}{a}\)và \(\dfrac{a}{a}+\dfrac{b+c}{a}=\dfrac{b}{b}+\dfrac{c+a}{b}\)
\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}\)và \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\)
\(\Rightarrow\dfrac{a+b+c}{c}-\dfrac{a+b+c}{a}=0\) \(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{c}-\dfrac{1}{a}\right)=0\)
và \(\dfrac{a+b+c}{a}-\dfrac{a+b+c}{b}=0\)
\(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=0\)
+) Vì a,b,c đôi một khác 0
\(\Rightarrow a+b+c=0\)
\(\rightarrow a+b=\left(-c\right)\)
\(\rightarrow a+c=\left(-b\right)\)
\(\rightarrow b+c=\left(-a\right)\)
+) Ta có:
\(M=\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)
\(=\left(\dfrac{a+b}{b}\right)\cdot\left(\dfrac{b+c}{a}\right)\cdot\left(\dfrac{c+a}{c}\right)\)
\(=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}\)
\(=\left(-1\right)\)
\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)
=>(b+c)^2=(b-c)^2
=>b+c=b-c hoặc b+c=-b+c
=>c=0 hoặc b=0