K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

Áp dụng tính chất tỉ dãy số bằng nhau. Ta có:

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}=1\)

Suy ra \(a+b+c=a+b-c\Rightarrow2c=0\)

Vậy \(c=0^{\left(đpcm\right)}\)

16 tháng 8 2017

Bài 1: Nhân chéo

Bài 2:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}\)

\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)

\(\Rightarrowđpcm\)

16 tháng 8 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)

\(=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}\)

\(=\dfrac{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}\)

\(=\dfrac{2b}{2b}=1\)

\(\Rightarrow a+b+c=a+b-c\)

\(\Rightarrow c=-c\)

\(\Rightarrow c+c=0\)

\(\Rightarrow2c=0\Rightarrow c=0\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(1\right)\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3\)

\(=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) ta có:

\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)

Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

b: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

DO đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

30 tháng 10 2017

\(\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b}{c}\)

\(\Rightarrow\dfrac{b+c}{a}+1=\dfrac{c+a}{b}+1=\dfrac{a+b}{c}+1\)

\(\Rightarrow\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}=\dfrac{a+b+c}{c}\)

Từ \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\Leftrightarrow a\left(a+b+c\right)=b\left(a+b+c\right)\)

\(\Rightarrow\left(a-b\right)\left(a+b+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=b\\a+b+c=0\end{matrix}\right.\left(đpcm\right)\)

14 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}=\dfrac{a+b+c-a+b-c}{a+b+c-a+b-c}=\dfrac{\left(a-a\right)+\left(c-c\right)+b+b}{\left(a-a\right)+\left(c-c\right)+b+b}=\dfrac{2b}{2b}=1\)

Nên

\(a+b+c=a+b-c\)

\(\Rightarrow a+b+c-a-b+c=0\)

\(\Rightarrow2c=0\Rightarrow c=0\)

14 tháng 10 2022

\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)

=>(b+c)^2=(b-c)^2

=>b+c=b-c hoặc b+c=-b+c

=>c=0 hoặc b=0

\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)

=>(b+c)^2=(b-c)^2

=>b+c=b-c hoặc b+c=c-b

=>b=0(loại) hoặc c=0

12 tháng 10 2017

Theo đề, ta có:

\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)\(b\ne0\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta lại có:

\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}=\dfrac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}\)

\(=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}=\dfrac{2b}{2b}=1\)

\(\Rightarrow a+b+c=a+b-c\Rightarrow c=-c\Rightarrow c-\left(-c\right)=0\)

\(\Rightarrow c+c=0\Rightarrow2c=0\Rightarrow c=0\)

Vậy \(c=0\)

~ Học tốt !~

26 tháng 7 2017

Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

Nên \(ab+ad< ab+bc\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (1)

Lại có \(ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (2)

Từ (1), (2) và sử dụng tính chất "bắc cầu", ta được:

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

(Không dám chắc kết quả là đúng, bởi vì bạn viết đề sai rồi)

26 tháng 7 2017

Ối nhầm đề nhé! Phải là "CMR nếu \(\dfrac{a}{b}< \dfrac{c}{d}\) thì \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

12 tháng 1 2018

b)\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)

Ta có:

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}\)\(\dfrac{b+c}{a}=\dfrac{c+a}{b}\)

\(\Rightarrow1+\dfrac{a+b}{c}=1+\dfrac{b+c}{a}\)\(1+\dfrac{b+c}{a}=1 +\dfrac{c+a}{b}\)

\(\Rightarrow\dfrac{c}{c}+\dfrac{a+b}{c}=\dfrac{a}{a}+\dfrac{b+c}{a}\)\(\dfrac{a}{a}+\dfrac{b+c}{a}=\dfrac{b}{b}+\dfrac{c+a}{b}\)

\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}\)\(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\)

\(\Rightarrow\dfrac{a+b+c}{c}-\dfrac{a+b+c}{a}=0\) \(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{c}-\dfrac{1}{a}\right)=0\)

\(\dfrac{a+b+c}{a}-\dfrac{a+b+c}{b}=0\)

\(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=0\)

+) Vì a,b,c đôi một khác 0

\(\Rightarrow a+b+c=0\)

\(\rightarrow a+b=\left(-c\right)\)

\(\rightarrow a+c=\left(-b\right)\)

\(\rightarrow b+c=\left(-a\right)\)

+) Ta có:

\(M=\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)

\(=\left(\dfrac{a+b}{b}\right)\cdot\left(\dfrac{b+c}{a}\right)\cdot\left(\dfrac{c+a}{c}\right)\)

\(=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}\)

\(=\left(-1\right)\)