Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\dfrac{x^2+x-6}{x^3-4x^2-18x+9}=\dfrac{x^2+3x-2x-6}{x^3+3x^2-7x^2-21x+3x+9}\)
\(=\dfrac{x\left(x+3\right)-2\left(x+3\right)}{x^2\left(x+3\right)-7x\left(x+3\right)+3\left(x+3\right)}\)
\(=\dfrac{\left(x-2\right)\left(x+3\right)}{\left(x^2-7x+3\right)\left(x+3\right)}=\dfrac{x-2}{x^2-7x+3}\)
Theo bài ra :
\(\dfrac{x^2-yz}{x\left(1-yz\right)}=\dfrac{y^2-xz}{y\left(1-xz\right)}\)
\(\Leftrightarrow\left(x^2-yz\right)\left(y-xyz\right)=\left(y^2-xz\right)\left(x-xyz\right)\)
\(\Leftrightarrow x^2y-x^3yz-y^2z+xx^2z^2=xy^2-xy^3z-x^2z+x^2yz^2=0\)
\(\Leftrightarrow xy\left(x-y\right)-xyz\left(x^2-y^2\right)+z\left(x^2-y^2\right)+xyz^2\left(x-x\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2\right)\right]=0\)
\(\Leftrightarrow\left(x-y\right)\left(xy+xz+yz-xyz\left(x+y+z\right)\right)=0\)
Mà theo đề bài :
\(x\ne y\Rightarrow xy+xz+yz-xyz\left(x+y+z\right)=0\)
\(\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)
\(\Leftrightarrow\dfrac{xy}{xyz}+\dfrac{xz}{xyz}+\dfrac{yz}{xyz}=\dfrac{xyz\left(z+y+x\right)}{xyz}\)
\(\Leftrightarrow\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{x}=x+y+z\left(đpcm\right)\)
Do \(xyz\ne0\) ta có:
\(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=0\Leftrightarrow xyz\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)=0\Leftrightarrow x+y+z=0\)
Lại có: \(x^3+y^3+z^3=x^3+y^3+3x^2y+3y^2x-3xy\left(x+y\right)+z^3\)
\(=\left(x+y\right)^3+z^3-3xy\left(-z\right)=\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)+3xyz=3xyz\)
Vậy nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz\)
\(P=\dfrac{x^2}{yz}+\dfrac{y^2}{xz}+\dfrac{z^2}{xy}=\dfrac{x^3}{xyz}+\dfrac{y^3}{xyz}+\dfrac{z^3}{xyz}=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{3xyz}{xyz}=3\)
Áp dụng công thức a3+b3+c3=3abc
Bài làm
Đặt \(\dfrac{1}{x}\)= a, \(\dfrac{1}{y}\)= b, \(\dfrac{1}{z}\)= c
vì a+b+c = 0 nên a3+b3+c3=3abc
S= \(\dfrac{yz}{x^2}\)+ \(\dfrac{xz}{y^2}\)+ \(\dfrac{xy}{z^{ }2}\)
=\(\dfrac{xyz}{x^{ }3}\)+\(\dfrac{xyz}{y^{ }3}\)+\(\dfrac{xyz}{z^{ }3}\) = xyz(\(\dfrac{1}{x^3}\)+\(\dfrac{1}{y^{ }3}\)+\(\dfrac{1}{z^{ }3}\))
= xyz ( a3+b3+c3 )
= xyz \(\times\)3abc = xyz \(\times\) \(\dfrac{3}{xyz}\) = 3
Sửa lại đề: cho x, y, z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\)
Chứng minh \(A=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\le\dfrac{3}{2}\)
Giải:
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow ab+bc+ac=1\)
\(\Rightarrow A=\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{bc}\left(1+\dfrac{1}{a^2}\right)}}+\dfrac{\dfrac{1}{b}}{\sqrt{\dfrac{1}{ac}\left(1+\dfrac{1}{b^2}\right)}}+\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{ab}\left(1+\dfrac{1}{c^2}\right)}}\)
\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+1}}+\sqrt{\dfrac{ac}{b^2+1}}+\sqrt{\dfrac{ab}{c^2+1}}\)
\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+ab+bc+ac}}+\sqrt{\dfrac{ac}{b^2+ab+bc+ac}}+\sqrt{\dfrac{ab}{c^2+ab+bc+ac}}\)
\(\Rightarrow A=\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ac}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)
\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)
\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\right)=\dfrac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\) hay \(x=y=z=\sqrt{3}\)
Đề bài này có rất nhiều vấn đề, đầu tiên không có điều kiện x, y, z gì cả? Dương? Â? Bằng 0? Khác 0?
Sau nữa là chiều của BĐT cũng có vấn đề nốt, mình thử với \(x=y=2;z=\dfrac{4}{3}\) thì vế trái ra \(\dfrac{2+\sqrt{30}}{5}\) mà theo casio cho biết thì số này nhỏ hơn \(\dfrac{3}{2}\) , vậy BĐT cũng sai luôn
Ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}=-\dfrac{1}{z}\)
\(\Leftrightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3=\left(-\dfrac{1}{z}\right)^3\)
\(\Leftrightarrow\dfrac{1}{x^3}+3\dfrac{1}{x^2}\dfrac{1}{y}+3\dfrac{1}{x}\dfrac{1}{y^2}+\dfrac{1}{y^3}=-\dfrac{1}{z^3}\)
\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}+3\dfrac{1}{x}\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=0\)
\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}+3\dfrac{1}{x}\dfrac{1}{y}.\left(-\dfrac{1}{z}\right)=0\)
\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)
\(\Leftrightarrow xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=\dfrac{3}{xyz}.xyz\)
\(\Leftrightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)
Vậy...