K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

a)

\(\dfrac{x^2+x-6}{x^3-4x^2-18x+9}=\dfrac{x^2+3x-2x-6}{x^3+3x^2-7x^2-21x+3x+9}\)

\(=\dfrac{x\left(x+3\right)-2\left(x+3\right)}{x^2\left(x+3\right)-7x\left(x+3\right)+3\left(x+3\right)}\)

\(=\dfrac{\left(x-2\right)\left(x+3\right)}{\left(x^2-7x+3\right)\left(x+3\right)}=\dfrac{x-2}{x^2-7x+3}\)

21 tháng 6 2017

Ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}=-\dfrac{1}{z}\)

\(\Leftrightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3=\left(-\dfrac{1}{z}\right)^3\)

\(\Leftrightarrow\dfrac{1}{x^3}+3\dfrac{1}{x^2}\dfrac{1}{y}+3\dfrac{1}{x}\dfrac{1}{y^2}+\dfrac{1}{y^3}=-\dfrac{1}{z^3}\)

\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}+3\dfrac{1}{x}\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=0\)

\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}+3\dfrac{1}{x}\dfrac{1}{y}.\left(-\dfrac{1}{z}\right)=0\)

\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)

\(\Leftrightarrow xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=\dfrac{3}{xyz}.xyz\)

\(\Leftrightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

Vậy...

10 tháng 6 2017

Theo bài ra :

\(\dfrac{x^2-yz}{x\left(1-yz\right)}=\dfrac{y^2-xz}{y\left(1-xz\right)}\)

\(\Leftrightarrow\left(x^2-yz\right)\left(y-xyz\right)=\left(y^2-xz\right)\left(x-xyz\right)\)

\(\Leftrightarrow x^2y-x^3yz-y^2z+xx^2z^2=xy^2-xy^3z-x^2z+x^2yz^2=0\)

\(\Leftrightarrow xy\left(x-y\right)-xyz\left(x^2-y^2\right)+z\left(x^2-y^2\right)+xyz^2\left(x-x\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[\left(xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2\right)\right]=0\)

\(\Leftrightarrow\left(x-y\right)\left(xy+xz+yz-xyz\left(x+y+z\right)\right)=0\)

Mà theo đề bài :

\(x\ne y\Rightarrow xy+xz+yz-xyz\left(x+y+z\right)=0\)

\(\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)

\(\Leftrightarrow\dfrac{xy}{xyz}+\dfrac{xz}{xyz}+\dfrac{yz}{xyz}=\dfrac{xyz\left(z+y+x\right)}{xyz}\)

\(\Leftrightarrow\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{x}=x+y+z\left(đpcm\right)\)

15 tháng 11 2018

\(\frac{x^2-3x+2}{x^3-1}=\frac{x^2-2x-x+2}{\left(x-1\right).\left(x^2+x+1\right)}\)

\(=\frac{x.\left(x-2\right)-\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{\left(x-1\right).\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}\)

\(=\frac{x-2}{x^2+x+1}\)

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Bài 1:

Đặt \(\left(\frac{x}{y}; \frac{y}{z}; \frac{z}{x}\right)=(a,b,c)\Rightarrow abc=1\)

Khi đó:

\(A^2+B^2+C^2-ABC=(b+\frac{1}{b})^2+(c+\frac{1}{c})^2+(a+\frac{1}{a})^2-(a+\frac{1}{a})(b+\frac{1}{b})(c+\frac{1}{c})\)

\(=b^2+\frac{1}{b^2}+2+c^2+\frac{1}{c^2}+2+a^2+\frac{1}{a^2}+2-(ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab})(c+\frac{1}{c})\)

\(a^2+b^2+c^2+(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})+6-[abc+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)+\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)+\frac{1}{abc}]\)

\(=a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+6-[1+\left(\frac{abc}{c^2}+\frac{abc}{a^2}+\frac{abc}{b^2}\right)+\left(\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}\right)+1]\)

\(=a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+6-[1+(\frac{1}{c^2}+\frac{1}{b^2}+\frac{1}{a^2})+(a^2+b^2+c^2)+1]\)

\(=4\)

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Câu 2:

Ta có:

\(xy+yz+xz+2xyz=\frac{ab}{(b+c)(c+a)}+\frac{bc}{(c+a)(a+b)}+\frac{ac}{(b+c)(a+b)}+\frac{2abc}{(a+b)(b+c)(c+a)}\)

\(=\frac{ab(a+b)}{(a+b)(b+c)(c+a)}+\frac{bc(b+c)}{(a+b)(b+c)(c+a)}+\frac{ac(a+c)}{(a+b)(b+c)(c+a)}+\frac{2abc}{(a+b)(b+c)(c+a)}\)

\(=\frac{ab(a+b)+bc(b+c)+ca(c+a)+2abc}{(a+b)(b+c)(c+a)}\)

\(=\frac{ab(a+b+c)+bc(b+c+a)+ca(c+a)}{(a+b)(b+c)(c+a)}\)

\(=\frac{(a+b+c)(ab+bc)+ac(a+c)}{(a+b)(b+c)(c+a)}=\frac{(c+a)b(a+b+c)+ac(a+c)}{(a+b)(b+c)(c+a)}\)

\(=\frac{(a+c)[b(a+b+c)+ac]}{(a+b)(b+c)(c+a)}=\frac{(a+c)[b(a+b)+c(a+b)]}{(a+b)(b+c)(c+a)}\)

\(=\frac{(a+c)(b+c)(a+b)}{(a+b)(b+c)(c+a)}=1\)