K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: ChoΔABC vuông tại A

\(BC^2=\left(BH+CH\right)^2\)

\(=BH^2+CH^2+2\cdot BH\cdot CH\)

\(=BH^2+CH^2+2\cdot AH^2\)

2 tháng 10 2018

Vi AH vuong goc vs BC 

=> Tam giac ABH vuong tai H

=> AH^2 + BH^2 = AB^2 ( 1 )

Vi AH vuong goc vs BC

=> Tam giac AHC vuong tai H

=> AH^2 + HC^2 = AC^2 ( 2 )

Tu 1 va 2 suy ra :

AC^2 + AB^2 = HB^2 + HC^2 + AH^ + AH^2 = HB^2 + HC^2 + 2AH^2

=> dpcm

29 tháng 3 2019

Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta được :
AH2 + BH2 = AB2
=> AH2 = AB2 - BH2 ( 1)
Áp dụng định lý Py-ta-go vào tam giác ACH vuông tại H ta được :
AH2 + CH2 = AC2

=> AH2 = AC2 - CH2 ( 2 )
Từ ( 1), (2 )
=> AB2 - BH2 = AC2 - CH2
=> AB2 + CH2 = AC2 + BH ( đpcm )
 

18 tháng 12 2019

không biết vẽ hình trên đây :)

Theo Pythagore

\(\hept{\begin{cases}AB^2+AC^2=BC^2\\AB^2=AH^2+BH^2\\AC^2=AH^2+CH^2\end{cases}\Rightarrow BC^2=\left(AH^2+BH^2\right)+\left(AH^2+CH^2\right)=2AH^2+BH^2+CH^2}\)

10 tháng 3 2020

Nyatmax

22 tháng 1 2016

giúp mình đi. Mình đang cần gấp. Cảm ơn các bạn.

15 tháng 2 2017

A B C H

Giải:

Trong \(\Delta AHB\) vuông tại H, áp dụng định lí Py-ta-go ta có:

\(AB^2=BH^2+AH^2\) (1)

Trong \(\Delta AHC\) vuông tại H, áp dụng định lí Py-ta-go ta có:

\(AC^2=AH^2+HC^2\) (2)

Cộng 2 vế (1) và (2) ta có: \(AB^2+AC^2=BH^2+AH^2+HC^2+AH^2\)

\(\Rightarrow AB^2+AC^2=BH^2+HC^2+2AH^2\left(đpcm\right)\)

Vậy...

22 tháng 1 2016

a,xét tam giac AHB va AHC.Ta có

góc AHB=góc AHC (vi = 90 độ)

cạnh AB=AC(vì ABC cân tại A)

góc B=góc C (vì ABC cân tại A)

-> tam giác AHB=AHC (cạnh huyền-góc nhọn)

-> goc MAH=gocNAH

b, xét tam giac AMH va ANH. có

goc ANH=góc AMH (90 độ)

cạnh AH chung

goc MAH=goc NAH(cm trên)

->tam giac AMH=ANH (cạnh huyền góc nhọn)

->AM=AN

->AMN là tam giác cân tại A