Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bạn tự vẽ hình giùm)
a/ \(\Delta HAB\)vuông và \(\Delta HCB\)vuông có: AB = CB (\(\Delta ABC\)cân tại A)
Cạnh HB chung
=> \(\Delta HAB\)vuông = \(\Delta HCB\)vuông (cạnh huyền - cạnh góc vuông) => HA = HC (hai cạnh tương ứng)
b/ \(\Delta AHD\)vuông và \(\Delta CHE\)vuông có: HA = HC (cm câu a)
\(\widehat{A}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
=> \(\Delta AHD\)vuông = \(\Delta CHE\)vuông (cạnh huyền - góc nhọn) => HD = HE (hai cạnh tương ứng)
c/ Ta có \(\Delta AHD\)= \(\Delta CHE\)(cm câu b) => AD = CE (hai cạnh tương ứng) (1)
và AB = AC (\(\Delta ABC\)cân tại A) (2)
Lấy (2) trừ (1) => AB - AD = AC - CE
=> BD = BE => \(\Delta BDE\)cân tại B
1.
Ta có : AC<AD (vì : D là tia đối của tia BC )
=> HD<HC
3.
Ta có : AB+AC>AH (vì : tog 2 cah cua tam giác luôn lớn hơn cah con lại)
Mà : 1/2AH<AB+AC
=> AB+AC>2AH
4.
Ta có : ko hiu
Vi AH vuong goc vs BC
=> Tam giac ABH vuong tai H
=> AH^2 + BH^2 = AB^2 ( 1 )
Vi AH vuong goc vs BC
=> Tam giac AHC vuong tai H
=> AH^2 + HC^2 = AC^2 ( 2 )
Tu 1 va 2 suy ra :
AC^2 + AB^2 = HB^2 + HC^2 + AH^ + AH^2 = HB^2 + HC^2 + 2AH^2
=> dpcm