Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình chắc có rồi
tam giác BEH vuông tại E => BE^2 + HE^2 = BH^2 (pytago)
HE = DH (câu b)
=> BE^2 + HD^2 = BH^2 (1)
Tam giác BHC vuông tại H => BH^2 = BC^2 - HC^2 (pytago)
HC = HA (Câu a)
=> BH^2 = HC^2 - AH^2 và (1)
=> BE^2 + DH^2 = BC^2 - AH^2
a) Xét ΔABH và ΔCBH có :
AHBˆ=CHBˆ=90oAHB^=CHB^=90o
BA = BC ( ΔABC cân ở A )
Aˆ=CˆA^=C^ ( ΔABC cân ở B )
=> ΔABH = ΔCBH ( c.h-g.n )
=> HA = HC ( 2 cạnh tương ứng )
b) Do ΔABH = ΔCBH ( c/m a )
=> ABHˆ=CBHˆABH^=CBH^ ( 2 góc tương ứng )
hay DBHˆ=EBHˆDBH^=EBH^
+) ΔBDH và ΔBEH có :
BDHˆ=BDHˆ=90oBDH^=BDH^=90o
DBHˆ=EBHˆ(cmt)DBH^=EBH^(cmt)
BH là cạnh chung
=> ΔBDH = ΔBEH ( c.h-g.n )
=> HE = HD ( 2 cạnh tương ứng )
c) Do ΔBDH = ΔBEH ( c/m b )
=> BD = BE ( 2 cạnh tương ứng )
=> ΔBDE cân ở B
d) Do ΔBHE vuông ở E ; áp dụng định lí Pi-ta-go , ta có :
BE2 + HE2 = BH2
Mà HE = HD (c/m b )
=> BE2 + HD2 = BH2 (*)
+) Mặt khác , ΔBCH vuông ở H , áp dụng định lí Pi-ta-go , ta có :
BC2 = BH2 + HC2
=> BC2−HC2=BH2BC2−HC2=BH2
mà HC = HA ( c/m a )
=> BC2−HA2=BH2BC2−HA2=BH2 (**)
Từ (*) và (**)
=> BE2+HD2=BC2−HA2(=BH2)BE2+HD2=BC2−HA2(=BH2)
a) Xét ΔABH và ΔCBH có :
\(\widehat{AHB}=\widehat{CHB}=90^o\)
BA = BC ( ΔABC cân ở A )
\(\widehat{A}=\widehat{C}\) ( ΔABC cân ở B )
=> ΔABH = ΔCBH ( c.h-g.n )
=> HA = HC ( 2 cạnh tương ứng )
b) Do ΔABH = ΔCBH ( c/m a )
=> \(\widehat{ABH}=\widehat{CBH}\) ( 2 góc tương ứng )
hay \(\widehat{DBH}=\widehat{EBH}\)
+) ΔBDH và ΔBEH có :
\(\widehat{BDH}=\widehat{BDH}=90^o\)
\(\widehat{DBH}=\widehat{EBH}\left(cmt\right)\)
BH là cạnh chung
=> ΔBDH = ΔBEH ( c.h-g.n )
=> HE = HD ( 2 cạnh tương ứng )
c) Do ΔBDH = ΔBEH ( c/m b )
=> BD = BE ( 2 cạnh tương ứng )
=> ΔBDE cân ở B
d) Do ΔBHE vuông ở E ; áp dụng định lí Pi-ta-go , ta có :
BE2 + HE2 = BH2
Mà HE = HD (c/m b )
=> BE2 + HD2 = BH2 (*)
+) Mặt khác , ΔBCH vuông ở H , áp dụng định lí Pi-ta-go , ta có :
BC2 = BH2 + HC2
=> \(BC^2-HC^2=BH^2\)
mà HC = HA ( c/m a )
=> \(BC^2-HA^2=BH^2\) (**)
Từ (*) và (**)
=> \(BE^2+HD^2=BC^2-HA^2\left(=BH^2\right)\)
a) Xét t.g ABH và t.g CBH có : AB = BC
\(\widehat{B}=\widehat{C}\)( cái 1 vs cái này do t.g ABC cân )
BH chung
=) t.g ABH = t.g CBH ( c.h-g.n)
=) HA= HB ( 2 cạnh t/ứng )
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểmcủa BC
hay HB=HC
b: Xét ΔADH vuông tạiD và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra HD=HE
hay ΔHDE cân tại H
A B C D E H
a, Xét \(\Delta ABH\) và\(\Delta ACH\) CÓ:
\(AHchung\)
AB = AC
\(\widehat{AHB}=\widehat{AHC}\)
\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền cạnh góc vuông)
=> BH = HC ( 2 cạnh tương ứng )
b,Do BC = 8cm => BH = 4cm
Áp dụng định lý Py ta go vào tam giác vuông ABH có :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2\)\(\Rightarrow AH^2=5^2-4^2=25-16=9\)\(\Rightarrow AH=3\left(cm\right)\)
c,\(Xét\Delta DBH\) và\(\Delta ECH\) có :
\(\widehat{ABH}=\widehat{ACH}\)
BH = HC
\(\widehat{BDH}=\widehat{CEH}\)
\(\Rightarrow\Delta DBH=\Delta ECH\)\(\Rightarrow DH=EH\)=> \(\Delta DHE\) cân tại H
cho mình 1 tym nha
Xét tam giác ABH và tam giác ACH
AB=AC(GT)
^AHB=^AHC=90o
^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác ABH = tam giác ACH
=> HB=HC ( 2c tứ)
có HB+HC=BC
mà BC=8 cm
HB=HC
=> HB=HC=4cm
Xét tam giác ABH : ^H=90o
=> AB2+AH2+BH2(đ/lý pythagoras)
thay số ta có :
52=AH2+42
25-16=AH2
9=AH2
3=AH
c)Xét tam giác BDH và tam giác ECH
^BDH= ^ HEC =90o
BH=CH
^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác BDH = tam giác ECH
=> DH=EH
=> HDE CÂN TẠI H (Đ/N)
d) qua tia đối của DH ; kẻ HK sao cho HK= DH
CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền) => HK > HC
mà HD=HK
=> HD>HC
(Bạn tự vẽ hình giùm)
a/ \(\Delta HAB\)vuông và \(\Delta HCB\)vuông có: AB = CB (\(\Delta ABC\)cân tại A)
Cạnh HB chung
=> \(\Delta HAB\)vuông = \(\Delta HCB\)vuông (cạnh huyền - cạnh góc vuông) => HA = HC (hai cạnh tương ứng)
b/ \(\Delta AHD\)vuông và \(\Delta CHE\)vuông có: HA = HC (cm câu a)
\(\widehat{A}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
=> \(\Delta AHD\)vuông = \(\Delta CHE\)vuông (cạnh huyền - góc nhọn) => HD = HE (hai cạnh tương ứng)
c/ Ta có \(\Delta AHD\)= \(\Delta CHE\)(cm câu b) => AD = CE (hai cạnh tương ứng) (1)
và AB = AC (\(\Delta ABC\)cân tại A) (2)
Lấy (2) trừ (1) => AB - AD = AC - CE
=> BD = BE => \(\Delta BDE\)cân tại B
B A C H D E