Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cậu tự vẽ hình nhá
a) Do D đối xứng với H qua đoạn AB nên tam giác ADH cân tại A
Tam giác ADH có AB là đường cao đồng thời là phân giác
=> góc DAB = góc HAB
Tương tự với tam giác AHE => góc HAC = góc EAC
Ta có :
góc DAE = (góc DAH) + (góc HAE) = 2.(góc BAH) + 2.(góc HAC) = 2.(góc BAH + góc HAC) = 2.90 = 180
=> D,A,E thẳng hàng
Nhận thấy
Tam giác AHC đối xứng với tam giác AEC qua đoạn thẳng AC => góc AHC = góc AEC = 900 (1)
Tương tự , ta cũng có : góc BHA = góc BDA = 900 (2)
Từ (1) và (2) => BD // EC (do 2 góc trong cùng phía bù nhau)
b) Ta có : tam giác BHA đồng dạng với tam giác AHC
Suy ra tỷ lệ \(\frac{BH}{AH}=\frac{AH}{HC}\Leftrightarrow AH^2=BH.HC\)
Mà BH = BD , HC = CE
=> \(AH^2=BD.CE\)
<=> \(4AH^2=4BD.CE\)
<=> \(\left(2AH\right)^2=4BD.CE\) (Do AD = AH = AE)
<=> \(DE^2=4BD.CE\)
a: Xét ΔBAC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
hay \(AH^2=HD\cdot HC\)
a: Ta có: D và H đối xứng nhau qua AB
nên AH=AD và BH=BD
=>ΔAHD cân tại A
mà AB là đường cao
nên AB là tia phân giác của góc HAD(1)
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
=>AH=AE và CH=CE
=>ΔAHE cân tại A
mà AC là đừog coa
nên AC là phân giác của góc HAE(2)
Từ (1)và (2) suy ra \(\widehat{EAD}=2\cdot90^0=180^0\)
=>E,A,D thẳng hàng
Xét ΔAHB và ΔADB có
AH=AD
BH=BD
AB chung
Do đo: ΔAHB=ΔADB
Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)
=>BD\(\perp\)DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
CH=CE
AC chung
Do đo: ΔAHC=ΔAEC
Suy ra: \(\widehat{AHC}=\widehat{AEC}=90^0\)
=>CE\(\perp\)DE(4)
từ (3) và (4) suy ra BD//CE
hay BCED là hình thang
b: \(BD\cdot CE=BH\cdot CH=AH^2=\left(\dfrac{DE}{2}\right)^2\)