Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cậu tự vẽ hình nhá
a) Do D đối xứng với H qua đoạn AB nên tam giác ADH cân tại A
Tam giác ADH có AB là đường cao đồng thời là phân giác
=> góc DAB = góc HAB
Tương tự với tam giác AHE => góc HAC = góc EAC
Ta có :
góc DAE = (góc DAH) + (góc HAE) = 2.(góc BAH) + 2.(góc HAC) = 2.(góc BAH + góc HAC) = 2.90 = 180
=> D,A,E thẳng hàng
Nhận thấy
Tam giác AHC đối xứng với tam giác AEC qua đoạn thẳng AC => góc AHC = góc AEC = 900 (1)
Tương tự , ta cũng có : góc BHA = góc BDA = 900 (2)
Từ (1) và (2) => BD // EC (do 2 góc trong cùng phía bù nhau)
b) Ta có : tam giác BHA đồng dạng với tam giác AHC
Suy ra tỷ lệ \(\frac{BH}{AH}=\frac{AH}{HC}\Leftrightarrow AH^2=BH.HC\)
Mà BH = BD , HC = CE
=> \(AH^2=BD.CE\)
<=> \(4AH^2=4BD.CE\)
<=> \(\left(2AH\right)^2=4BD.CE\) (Do AD = AH = AE)
<=> \(DE^2=4BD.CE\)
\(\Delta\)AHB=\(\Delta\)ADB(c-c-c) thông qua việc chứng minh 2 cặp tam giác nhỏ
=>góc ADB=90(1)
\(\Delta\)AEC=\(\Delta\)AHC(c-c-c)cũng thông qua việc chứng minh 2 cặp tam giác nhỏ
=>góc CEA=90(2)
Mà:D;E;A thẳng hàng(3)
từ 1,2 và 3 suy ra BCED là hình thang
\(\Delta\)AEC đồng dạng \(\Delta\)BDA(g-g)=>BD.CE=AD.AE(1)
\(\Delta\)AIE=\(\Delta\)DKA(g-c-g)=>AE=AD=1/2DE(2)
1 và 2=>BD.CE=DE2/4
Xét \(\Delta ABC\)có:
DB = DA (giả thiết)
AE = CE (giả thiết)
\(\Rightarrow DE\)là đường trung bình của \(\Delta ABC\)
\(DE//BC\)(tính chất) \(\Rightarrow DE//BF\)(1)
Và \(2DE=BC\)(tính chất)
Mà \(2BF=BC\)(vì \(BF=CF\))
\(\Rightarrow2DE=2BF\Rightarrow DE=BF\)(2)
Xét tứ giác BDEF có: (1) và (2).
\(\Rightarrow BDEF\)là hình bình hành.
Vậy BDEF là hình bình hành.
a, là hcn
câu b
từ câu a => hf // và = ae
mà hf = fm
=> fm // và = ae
=> đpcm
câu c
tam giác bnh có be vừa là dcao vừa trung tuyến
=> tam giác bnh cân b
=> bn=bh (1)
cmtt => ch=cm (2)
mà bc= bh+ch
=> bc^2 = (bh+ch+)^2
= bh^2 + 2 bh.ch +ch^2 (3)
(1) (2) (3) => ... (đpcm)
lười làm đầy đủ nên vắn ắt z thôi, thông cảm nhé ^_^
a) Theo tính chất một điểm nằm trên đường trung trực thì cách đều 2 đầu mút
=> AD = AH và AH = AE
Xét tam giác BDA và tam giác BHA có :
BA chung
BD = BH (theo tính chất nêu trên) => tam giác BDA = tam giác BHA (1)
AD = AH
Xét tam giác AHC và tam giác AEC có :
AC chung
AH = AE => tam giác AHC = tam giác AEC (2)
CH = CE (như tính chất nêu trên)
Từ (1)
=> \(AD⊥BD\) và \(\widehat{DAB}=\widehat{HAB}\)
Từ (2) ta cũng có :
\(AE⊥CE\) và \(\widehat{HAC}=\widehat{EAC}\)
Ta lại có :
\(\widehat{HAB}+\widehat{HAC}=90^0\)
\(\Rightarrow\widehat{DAB}+\widehat{HAB}+\widehat{HAC}+\widehat{EAC}=2\widehat{HAB}+2\widehat{HAC}=180^0\)
=> D , A , E thẳng hàng
VÀ AD vuông góc với BD
AE vuông góc với CE
MÀ AD , AE thuộc DE
=> BD // CE
a: Ta có: H và D đối xứng nhau qua AB
nên AB là đường trung trực của HD
=>AH=AD
=>ΔAHD cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAD(1)
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
=>AH=AE
=>ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra góc EAD=2x90 độ=180 độ
=>E,A,D thẳng hàng
b: Xét ΔAHB và ΔADB có
AH=AD
BH=BD
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: góc ADB=90 độ
=>BD vuông góc với ED(3)
Xét ΔAHC và ΔAEC có
AH=AE
HC=EC
AC chung
DO đo: ΔAHC=ΔAEC
Suy ra: góc AEC=90 độ
=>CE vuông góc với DE(4)
Từ (3) và (4) suy ra BDEC là hình thang vuông
b: \(BD\cdot CE=BH\cdot CH=AH^2=\dfrac{DE^2}{4}\)
a: Ta có: D và H đối xứng nhau qua AB
nên AH=AD và BH=BD
=>ΔAHD cân tại A
mà AB là đường cao
nên AB là tia phân giác của góc HAD(1)
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
=>AH=AE và CH=CE
=>ΔAHE cân tại A
mà AC là đừog coa
nên AC là phân giác của góc HAE(2)
Từ (1)và (2) suy ra \(\widehat{EAD}=2\cdot90^0=180^0\)
=>E,A,D thẳng hàng
Xét ΔAHB và ΔADB có
AH=AD
BH=BD
AB chung
Do đo: ΔAHB=ΔADB
Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)
=>BD\(\perp\)DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
CH=CE
AC chung
Do đo: ΔAHC=ΔAEC
Suy ra: \(\widehat{AHC}=\widehat{AEC}=90^0\)
=>CE\(\perp\)DE(4)
từ (3) và (4) suy ra BD//CE
hay BCED là hình thang
b: \(BD\cdot CE=BH\cdot CH=AH^2=\left(\dfrac{DE}{2}\right)^2\)