\(\perp\)A, đường cao ẠH. Gọi D, E lần lượt là các điểm đối xứng của H qua AB, AC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: D và H đối xứng nhau qua AB

nên AH=AD và BH=BD

=>ΔAHD cân tại A

mà AB là đường cao

nên AB là tia phân giác của góc HAD(1)

Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE

=>AH=AE và CH=CE

=>ΔAHE cân tại A

mà AC là đừog coa

nên AC là phân giác của góc HAE(2)

Từ (1)và (2) suy ra \(\widehat{EAD}=2\cdot90^0=180^0\)

=>E,A,D thẳng hàng

Xét ΔAHB và ΔADB có

AH=AD

BH=BD

AB chung

Do đo: ΔAHB=ΔADB

Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)

=>BD\(\perp\)DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

CH=CE

AC chung

Do đo: ΔAHC=ΔAEC

Suy ra: \(\widehat{AHC}=\widehat{AEC}=90^0\)

=>CE\(\perp\)DE(4)

từ (3) và (4) suy ra BD//CE
hay BCED là hình thang

b: \(BD\cdot CE=BH\cdot CH=AH^2=\left(\dfrac{DE}{2}\right)^2\)

 

11 tháng 5 2018

Cậu tự vẽ hình nhá 

a) Do D đối xứng với H qua đoạn AB nên tam giác ADH cân tại A 

Tam giác ADH có AB là đường cao đồng thời là phân giác 

=> góc DAB = góc HAB 

Tương tự với tam giác AHE => góc HAC = góc EAC

Ta có : 

góc DAE = (góc DAH) + (góc HAE) = 2.(góc BAH) + 2.(góc HAC) = 2.(góc BAH + góc HAC) = 2.90 = 180

=> D,A,E thẳng hàng 

Nhận thấy 

Tam giác AHC đối xứng với tam giác AEC qua đoạn thẳng AC => góc AHC = góc AEC = 900 (1)

Tương tự , ta cũng có : góc BHA = góc BDA = 90(2)

Từ (1) và (2) => BD // EC (do 2 góc trong cùng phía bù nhau)

b) Ta có : tam giác BHA đồng dạng với tam giác AHC 

Suy ra tỷ lệ \(\frac{BH}{AH}=\frac{AH}{HC}\Leftrightarrow AH^2=BH.HC\)

Mà BH = BD , HC = CE

=> \(AH^2=BD.CE\)

<=> \(4AH^2=4BD.CE\)

<=> \(\left(2AH\right)^2=4BD.CE\)           (Do AD = AH = AE)

<=> \(DE^2=4BD.CE\)

19 tháng 3 2019

\(\Delta\)AHB=\(\Delta\)ADB(c-c-c) thông qua việc chứng minh 2 cặp tam giác nhỏ

=>góc ADB=90(1)

\(\Delta\)AEC=\(\Delta\)AHC(c-c-c)cũng thông qua việc chứng minh 2 cặp tam giác nhỏ

=>góc CEA=90(2)

Mà:D;E;A thẳng hàng(3)

từ 1,2 và 3 suy ra BCED là hình thang

19 tháng 3 2019

\(\Delta\)AEC đồng dạng \(\Delta\)BDA(g-g)=>BD.CE=AD.AE(1)

\(\Delta\)AIE=\(\Delta\)DKA(g-c-g)=>AE=AD=1/2DE(2)

1 và 2=>BD.CE=DE2/4

12 tháng 3 2021

A B C H D E F

12 tháng 3 2021

Xét \(\Delta ABC\)có:

DB = DA (giả thiết)

AE = CE (giả thiết)

\(\Rightarrow DE\)là đường trung bình của \(\Delta ABC\)

\(DE//BC\)(tính chất) \(\Rightarrow DE//BF\)(1)

Và \(2DE=BC\)(tính chất)

Mà \(2BF=BC\)(vì \(BF=CF\))

\(\Rightarrow2DE=2BF\Rightarrow DE=BF\)(2)

Xét tứ giác BDEF có: (1) và (2).

\(\Rightarrow BDEF\)là hình bình hành.

Vậy BDEF là hình bình hành.

27 tháng 11 2016

a, là hcn

câu b

từ câu a => hf // và = ae

mà hf = fm

=> fm // và = ae

=> đpcm

câu c

tam giác bnh có be vừa là dcao vừa trung tuyến

=> tam giác bnh cân b

=> bn=bh (1)

cmtt => ch=cm (2)

mà bc= bh+ch

=> bc^2 = (bh+ch+)^2

= bh^2 + 2 bh.ch +ch^2 (3)

(1) (2) (3) => ... (đpcm)

lười làm đầy đủ nên vắn ắt z thôi, thông cảm nhé ^_^

20 tháng 6 2017

A B C H D

20 tháng 6 2017

a) Theo tính chất một điểm nằm trên đường trung trực thì cách đều 2 đầu mút 

=> AD = AH và AH = AE

Xét tam giác BDA và tam giác BHA có :

BA chung 

BD = BH (theo tính chất nêu trên)            => tam giác BDA = tam giác BHA  (1)

AD = AH 

Xét tam giác AHC và tam giác AEC có :

AC chung 

AH = AE                                                => tam giác AHC = tam giác AEC  (2)

CH = CE (như tính chất nêu trên)

Từ (1) 

=> \(AD⊥BD\) và \(\widehat{DAB}=\widehat{HAB}\)

Từ (2) ta cũng có :

\(AE⊥CE\) và \(\widehat{HAC}=\widehat{EAC}\)

Ta lại có :

\(\widehat{HAB}+\widehat{HAC}=90^0\)

\(\Rightarrow\widehat{DAB}+\widehat{HAB}+\widehat{HAC}+\widehat{EAC}=2\widehat{HAB}+2\widehat{HAC}=180^0\)

=> D , A , E thẳng hàng 

VÀ AD vuông góc với BD

     AE vuông góc với CE

MÀ AD , AE thuộc DE

=> BD // CE

a: Ta có: H và D đối xứng nhau qua AB

nên AB là đường trung trực của HD

=>AH=AD
=>ΔAHD cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAD(1)

Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE

=>AH=AE
=>ΔAHE cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAE(2)

Từ (1) và (2) suy ra góc EAD=2x90 độ=180 độ

=>E,A,D thẳng hàng

b: Xét ΔAHB và ΔADB có

AH=AD

BH=BD

AB chung

Do đó: ΔAHB=ΔADB

Suy ra: góc ADB=90 độ

=>BD vuông góc với ED(3)

Xét ΔAHC và ΔAEC có

AH=AE

HC=EC

AC chung

DO đo: ΔAHC=ΔAEC
Suy ra: góc AEC=90 độ

=>CE vuông góc với DE(4)

Từ (3) và (4) suy ra BDEC là hình thang vuông

b: \(BD\cdot CE=BH\cdot CH=AH^2=\dfrac{DE^2}{4}\)