Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AMC và tam giác EMB có:
AM = EM (gt)
AMC = EMB (2 góc đối đỉnh)
MC = MB (M là trung điểm của BC)
=> tam giác AMC = Tam giác EMB (c.g.c)
=> ACM = EBM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AC // EB
Xét tam giác MAI và tam giác MEK có:
MA = ME (gt)
MAI = MEK (2 góc so le trong, AC // EB)
AI = EK (gt)
=> Tam giác MAI = Tam giác MEK (c.g.c)
=> AMI = EMK (2 góc tương ứng)
mà EMK + KMA = 1800 (2 góc lề bù)
=> KMA + AMI = 1800
=> KMA và AMI là 2 góc kề bù
=> MK và MI là 2 tia đối
=> K, M, I thẳng hàng
A.xét ∆ACM và ∆ECM có
MA=ME(gt)
MC chung
AMC=EMC(2góc kề bù)
=>∆AMC=∆EMC(c.g.c)
=>AC=CE(2cạnh tương ứng)
*AC//BE
Xét ∆ACM và∆EBM
MA=ME(gt)
BM=CM(vì M là trung điểm)
AMC=EMB(2góc đối đỉnh)
=>∆AMC=∆EMB(c.g.c)
=>ACM=EBM(2góc tương ứng)
Mà hai góc ở vị trí so le trong
=>AC//BE
Câu hỏi b và c chưa rõ đề bài.
A B C D M K F E N O
cau a:CB;AN là trung tuyến ;CB/MB=2/3
> M trọng tâm tam giác ACD > vậy A;M;N thẳng hàng
câu b:DM là đường trung tuyến thứ 3> K trung diemAC.
cậu c: tương tự AF;CE;MK đồng qui tại O là trọng tâm tam giác ACM
c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)
và ABK = ADK (2 góc tương ứng)
Mà ABK + KBE = 180o (kề bù)
ADK + KDC = 180o (kề bù)
nên KBE = KDC
Xét Δ KBE và Δ KDC có:
BE = CD (gt)
KBE = KDC (cmt)
BK = DK (cmt)
Do đó, Δ KBE = Δ KDC (c.g.c)
=> BKE = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180o (kề bù)
Do đó, BKE + BKD = 180o
=> EKD = 180o
hay 3 điểm E, K, D thẳng hàng (đpcm)
Silver bulletsoyeon_Tiểubàng giảiPhương AnNguyễn Huy TúHoàng Lê Bảo NgọcTrương Hồng Hạnh giải giúp mk bài hình đó đi
Chứng minh
a, Xét \(\Delta MAB\) và \(\Delta MDC\) có :
MA = MD (gt)
\(\widehat{AMB}=\widehat{DMC}\) ( đối đỉnh )
MB = MC (gt)
\(\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\)
b, \(\Delta MAB=\Delta MDC\) (câu a)
\(\Rightarrow\widehat{BAM}=\widehat{CDM}\) ( ở vị trí so le trong)
\(\Rightarrow\) AB // CD
\(\Rightarrow\widehat{BAC}+\widehat{ACD}=180^O\)
\(\Rightarrow90^O+\widehat{ACD}=180^O\)
\(\Rightarrow\widehat{ACD}=90^O\)
\(\Rightarrow\Delta ACD\) vuông tại C
câu c nè ( hơi lằng nhằng chút nha )
Chứng minh
c, \(\Delta MAB=\Delta MDC\) ( câu a )
\(\Rightarrow AB=CD\) ( hai cạnh tương ứng )
Xét \(\Delta KAB\) và \(\Delta KCD\) có :
AK = CK (gt)
\(\widehat{KAB}=\widehat{KCD}\) (=1v)
AB = CD (c/m trên)
\(\Rightarrow\Delta KAB=\Delta KCD\) (c.g.c)
\(\Rightarrow KB=KD\) (hai cạnh tương ứng)
và \(\widehat{AKB}=\widehat{CKD}\) (hai góc tương ứng)
\(\Rightarrow\widehat{AKB}+\widehat{BKD}=\widehat{CKD}+\widehat{BKD}\) hay \(\widehat{AKD}=\widehat{CKB}\)
Xét \(\Delta AKD\) và \(\Delta CKB\) có :
AK = CK (gt)
\(\widehat{AKD}=\widehat{CKB}\) (c/m trên )
KD = KB ( c/m trên )
\(\Rightarrow\Delta AKD=\Delta CKB\) (c.g.c)
\(\Rightarrow\widehat{ADK}=\widehat{CBK}\) ( hai góc tương ứng )
Xét \(\Delta IKB\) và \(\Delta NKD\) có :
\(\widehat{BKD}\) chung
KB = KD (c/m trên )
\(\widehat{KBI}=\widehat{KDN}\) (c/m trên )
\(\Rightarrow\Delta IKB=\Delta NKD\) (g.c.g)
\(\Rightarrow KI=KN\) (hai cạnh tương ứng )
\(\Rightarrow\Delta KIN\) cân
Tự vẽ hình nhé!
a) Xét \(\Delta ACM;\Delta EBM:\)
\(AM=EM\left(gt\right)\)
\(\widehat{AMC}=\widehat{EMB}\left(đ^2\right)\)
\(CM=BM\) (suy từ gt)
\(\Rightarrow\Delta ACM=\Delta EBM\left(c.g.c\right)\)
\(\Rightarrow\widehat{CAM}=\widehat{BEM}\)
mà 2 góc này ở vị trí so le trog \(\Rightarrow AC\) // \(BE.\)
b) Ta có \(\widehat{CAM}=\widehat{BEM}\left(a\right)\) hay \(\widehat{IAM}=\widehat{KEM}\).
Xét \(\Delta IAM;\Delta KEM:\)
\(AI=EK\left(gt\right)\)
\(\widehat{IAM}=\widehat{KEM}\) (c/m trên)
\(AM=EM\left(gt\right)\)
\(\Rightarrow\Delta IAM=\Delta KEM\left(c.g.c\right)\)
\(\Rightarrow\widehat{IMA}=\widehat{KME}\)
Lại có: \(\widehat{IMA}+\widehat{IME}=180^o\) (kề bù)
\(\Rightarrow\widehat{KME}+\widehat{IME}=180^o.\)
\(\Rightarrow I,M,K\) thẳng hàng.
thanks very much