Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
Vì \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)
để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy.....
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)
Ta có:
(\(\dfrac{a}{b}\))3=\(\dfrac{1}{8000}\)
\(\Rightarrow\)(\(\dfrac{a}{b}\))3=(\(\dfrac{1}{20}\))3
\(\Rightarrow\)\(\dfrac{a}{b}\)=\(\dfrac{1}{20}\)
Theo tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{1}\)=\(\dfrac{b}{20}\)=\(\dfrac{a+b}{1+20}\)=\(\dfrac{42}{21}\)=2
\(\Rightarrow\)b=2.20=40
Vậy b=40
Học tốt!
B A C M K H G I
a) Xét hai tam giác MHB và MKC có:
MB = MC (gt)
Góc HMB = góc KMC (đối đỉnh)
MH = MK (gt)
Vậy: tam giác MHB = tam giác MKC (c - g - c)
c) Ta có: AM = MB = MC = \(\dfrac{1}{2}\) BC (đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
=> Tam giác MAB cân tại M
=> MH là đường cao đồng thời là đường trung tuyến
hay HB = HA
=> CH là đường trung tuyến ứng với cạnh AB
Hai đường trung tuyến AM và CH cắt nhau tại G
=> G là trọng tâm của tam giác ABC
Mà BI đi qua trọng tâm G (G thuộc BI)
Do đó BI là đường trung tuyến còn lại
hay I là trung điểm của AC (đpcm).
bn tự vẽ hình nha
a) Xét \(\Delta ABH\) và \(\Delta CAK\)
có: góc AHB = góc AEC =\(90^0\) (gt)
AB=AC
góc ABH= góc CAE(cùng phụ với BAE)
\(\Rightarrow\) \(\Delta ABH\)=\(\Delta CAK\) (ch-gn)
\(\Rightarrow\)BH=AK ( 2 cạnh tương ứng)
b)\(\Delta ABC\) vuông cân; M lf trung điểm của BC
\(\Rightarrow AM=BM=CM\)
Xét \(\Delta HBM\)và \(\Delta KAM\)
Có: góc HBM= góc KAM( cùng phụ với góc BEH)
HB=KA ( cmt)
BM=AM (cmt)
\(\Rightarrow\) \(\Delta HBM\) = \(\Delta KAM\)
c) \(\Delta HBM\)= \(\Delta KAM\)(cmt)
\(\Rightarrow MH=MK\) ( hai cạnh tương ứng) (1)
Xét \(\Delta AHM\) và \(\Delta CEM\)
Có: AH=CE (\(\Delta ABH=\Delta CEK\))
MH = MK (cmt)
AM =MC ( cmt)
\(\Rightarrow\) \(\Delta AHM\) = \(\Delta CEM\)
\(\Rightarrow\) góc AMH= góc CMK
mà góc AMH + góc EMH = \(90^0\)
\(\Rightarrow\) góc HME + góc CMK=\(90^0\)
\(\Rightarrow\) góc HMK=\(90^0\) (2)
Từ (1) và (2) \(\Rightarrow\) Tam giác MHK vuông cân.
A B C M H N K
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
AB = AC (\(\Delta ABC\) cân tại A)
AM chung
BM = CM (suy từ gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
hay \(\widehat{HBM}=\widehat{KCM}\)
Xét \(\Delta HBM\) vuông tại H và \(\Delta KCM\) vuông tại K có;
BM = CM
\(\widehat{HBM}=\widehat{KCM}\) (c/m trên)
\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)
c) Ta có: \(BM=CM=\dfrac{1}{2}BC\) (M là tđ)
\(\Rightarrow BM=CM=\dfrac{1}{2}.16=8\)
Vì \(\Delta ABM=\Delta ACM\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) = \(90^o\)
\(\Rightarrow\Delta ABM\) vuông tại M
Áp dụng định lý pytago vào \(\Delta ABM\) vuông tại M có:
\(AB^2=AM^2+BM^2\)
\(\Rightarrow AM^2=17^2-8^2\)
\(\Rightarrow AM^2=15^2\)
\(\Rightarrow AM=15\)
Lại có: \(AN=NM=\dfrac{1}{2}AM=\dfrac{1}{2}.15=7,5\)
Vậy \(S_{\Delta BNC}=\dfrac{NM.BC}{2}=\dfrac{7,5.16}{2}=60\) \(\left(cm^2\right)\).
A B C D M K F E N O
cau a:CB;AN là trung tuyến ;CB/MB=2/3
> M trọng tâm tam giác ACD > vậy A;M;N thẳng hàng
câu b:DM là đường trung tuyến thứ 3> K trung diemAC.
cậu c: tương tự AF;CE;MK đồng qui tại O là trọng tâm tam giác ACM