Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = a.b/2
Xét : a^2+b^2/4 - ab/2 = a^2+b^2-2ab/4 = (a-b)^2/4 >= 0
=> ab/2 < = a^2+b^2/4
=> S < = a^2+b^2/4
=> đpcm
Tk mk nha
Bạn dưới Nguyễn Anh Quân nhầm rồi ; đây là tam giác thường chứ ko phải tam giác vuông
Bài 1)
a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)
Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật
b) Câu này không đúng rồi bạn
Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân
Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)
c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông
\(AB^2=BC.BH=13.4\)
\(\Rightarrow AB=2\sqrt{13}\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)
Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)
Bài 2)
a) \(ED=AD-AE=17-8=9\)
Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy
\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)
Vậy \(\Delta ABE~\Delta DEC\)
b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)
c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông
Nên BK = AD và AB = DK
\(\Rightarrow KC=DC-DK=12-6=6\)
Theo định lý Pytago ta có
\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)
Mk còn thiếu vế trái nữa
a2 + b2 + c2 \(\le\)2 ( ab + bc + ca )
Vì a ; b ; c là 3 cạnh của 1 tam giác nên theo bất đẳng thức tam giác:
Ta có:
a\(\le\)b +c => a . a \(\le\)a.(b + c) => a2 \(\le\) ab + ac ( 1 )
b \(\le\) a + c => b . b \(\le\)b ( a + c ) => b2 \(\le\)ab + bc ( 2)
c \(\le\) a + b => c . c \(\le\) c . ( a + b ) => c2 \(\le\) ac + bc ( 3 )
Cộng với các vế ( 1 ) ; ( 2 ) ; ( 3 ) được:
a2+ b2 + c2 \(\le\) ab + ac + ab + bc + ac + bc
Vậy a2 + b2 + c2 \(\le\)2.( ab + bc + ca )
a2 + b2 + c2 \(\ge\) ab + bc + ca
<=> a2 + b2 + c2 - ab - bc - ca \(\ge\) 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca \(\ge\)0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) \(\ge\)0
<=> ( a - b )2 + ( b - c)2 + ( c - a)2 \(\ge\) 0 ( Luôn đúng)
Dấu " = " xảy ra khi a = b = c
Gọi chiều cao tương ứng với các cạnh a, b, c là ha ; hb ; hc
Ta có \(S=\frac{1}{2}a.h_a=\frac{1}{2}b.h_b=\frac{1}{2}c.h_c\)
Theo quan hệ giữa đường vuông góc và đường xiên thì \(h_a\le b;h_b\le c;h_c\le a\)
Vậy nên \(S=\frac{1}{2}a.h_a\le\frac{1}{2}a.b\Rightarrow2S\le ab\)
Tương tự \(2S< bc;2S< ca\)