K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

Xét △DEC và △BAC có

góc D chung

góc CDE= góc CBA (=90)

Vậy △DEC đồng  dạng △BAC (g_g)

=> \(\frac{CD}{BC}=\frac{EC}{CA}\Rightarrow\frac{CD}{EC}=\frac{BC}{CA}\)

Xét △EAC và △DBC có

góc C chung

\(\frac{CD}{EC}=\frac{BC}{CA}\)(cmt)

Vậy △EAC đồng dạng △BDC (c_g_c)

=> góc CEA = góc CDB

Ta chứng minh được tam giác DHB vuông cân (góc H = 90 ,DH=HB)

=>gócHDB=45 hay là là góc BDA =45 (nó cùng là 1 góc nhưng do cách gọi tên thôi)

Ta có

\(\hept{\begin{cases}gocCEA+gocAEB=180^o\\gocCDB+gocBDA=180^0\end{cases}}\) 

Mà góc CEA = góc CDB

=> góc AEB=góc BDA 

Mà góc BDA=45

=> góc AEB=45

Xét tam giác EBA có

góc E=90

góc EBA=45

=>góc DAB =45

=> tam giác ABE vuông cân tại E

=> BA=BE

T I C K nha 

____________________Chúc bạn học tốt ______________________

6 tháng 7 2016

Các bạn giúp mình với ^^ 

20 tháng 6 2020

a, Xét tam giác ABC có:

AC2+AB2=242+182=900=302=BC2AC2+AB2=242+182=900=302=BC2⇒⇒ Tam giác ABC vuông tại A

Xét tam giác ABC và MDC có:

DMCˆ=BACˆDMC^=BAC^

CˆC^ là góc chung

⇒⇒ Tam giác ABC ~MDC ( g.g)

b, Vì tam giác ABC~MDC ⇒ABAC=MDMC=34⇒MD=3MC4⇒ABAC=MDMC=34⇒MD=3MC4ACBC=MCDC=45⇒DC=5MC4ACBC=MCDC=45⇒DC=5MC4

Mà:

ABMD=BCDC=ACMC=AB+BC+ACMD+DC+MC=723MC4+5MC4+4MC4ABMD=BCDC=ACMC=AB+BC+ACMD+DC+MC=723MC4+5MC4+4MC4=7212MC3⇒12MC=72.3=216⇒MC=18cm=7212MC3⇒12MC=72.3=216⇒MC=18cm⇒MD=3.184=13,5cm⇒MD=3.184=13,5cm

⇒DC=5.184=22,5cm

21 tháng 4 2017

B A O M N C d E P I

30 tháng 4 2018

d) Tự vẽ hình nhé 

Dễ thấy I là trực tâm => CK là đường cao.

Do AM là phân giác nên góc MAB = góc MAC = 45 

mà góc MAB = góc ICB 

suy ra góc KBC = 45 

=> góc BDM = 45 

=> MB = MD (do tam giác MBD vuông cân) 

Do AM là phân giác nên ta có tỷ lệ sau \(\frac{MC}{6}=\frac{MB}{8}\)

Theo Pythagoras => (MC + MB)^2 = AC^2 + AB^2 = 100 

Áp dụng tính chất dãy tỉ số bằng nhau , suy ra 

\(\frac{MC}{6}=\frac{MB}{8}=\frac{MC+MB}{14}=\frac{10}{14}=\frac{5}{7}\)

=> \(\hept{\begin{cases}MC=\frac{30}{7}\\MB=\frac{40}{7}\end{cases}}\)

Suy ra \(MD=\frac{40}{7}\)

Suy ra \(S_{BCD}=\frac{1}{2}.MD.BC=\frac{1}{2}.\frac{40}{7}.10=\frac{200}{7}\)

Ta áp dụng Pythgoras vào tam giác CMD để tính CD = 50/7 

Sau đó tinh S(CMA) dựa vào tỷ lệ 

Rồi lấy S(BCD) - S(CMA) là ra S(BMAD)