K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2017

B A C E D O

a) Tam giác ABD và CBD có:

AB=CB (do tam giác ABC đều)

góc ABD = góc CBD (vì BD là tia phân giác của góc ABC)

BD chung

=> tam giác ABD=tam giác CBD (c.g.c) => góc BDA=góc BDC (2 góc tương ứng)

mà 2 góc này kề bù suy ra góc BDA=góc BDC=90o => BD vuông góc với AC

Chứng minh tương tự được CE vuông góc với AB

b) Tam giác ABC đều nên góc BAC=góc ABC=góc ACB=60o

mà: góc ABD=góc CBD (vì BD là tia phân giác góc ABC); góc ACE=góc BCE (vì CE là tia phân giác góc ACB)

=> góc ABD=góc CBD=góc ACE=góc BCE

Tam giác BOC có: góc CBD=góc BCE => tam giác BOC cân tại O => OB=OC(1)

Tam giác BAO và tam giác CAO có: AB=CA(\(\Delta ABC\)cân tại A);cạnh AO chung;OB=OC(cmt)

=>Tam giác BAO = tam giác CAO (c.c.c) => góc BAO=góc CAO (2 góc tương ứng) 

mà góc ABC=BAC nên góc ABD=góc CBD=góc BAO=góc CAO=> tam giác BAO cân tại O=>OA=OB(2)

Từ (1) và (2) => OA=OB=OC

c) phần này dễ nên tự làm nhé 

7 tháng 10 2017

Ta có hình vẽ:

A B C O D E

a/ Ta có: tam giác ABC đều => AB = BC = CA và góc A = góc B = góc C

Mà BD;CE lần lượt là pg của góc B; góc C

=> góc OBC = góc OCB.

=> tam giác OBC cân => OB = OC.

Xét tam giác ABO và tam giác ACO có:

AB = AC (cmt)

AO: chung

BO = CO (Cmt)

=> tam giác ABO = tam giác ACO

=> góc BAO = góc CAO = 1/2 góc A

Mà BD là pg góc B => ABO = 1/2 góc B

Mà góc A = góc B => góc BAO = góc ABO

=> tam giác OAB cân tại O => OA = OB

==> OA = OB = OC (đpcm).

b/ Ta có: góc BAO = góc CAO = góc ABD = góc ACE = góc OBC = góc OCB

Mà góc AOB = 1800 - góc OAB - góc OBA

góc BOC = 1800 - góc OBC - góc OCB

góc COA = 1800 - góc OAC - góc OCA

==> góc AOB = góc BOC = góc COA

Mà góc AOB + góc BOC + góc COA = 3600

=> góc AOB = góc BOC = góc COA = 1200

20 tháng 12 2017

Vì 3 tam giác này có 3 góc bằng nhau :

\(\Rightarrow\widehat{BAC}\times3=180\) độ

\(\Rightarrow\widehat{BAC}=60\) độ

\(\Rightarrow\widehat{ABD}=30\) độ

\(\Rightarrow\widehat{ABD}+\widehat{BAD}\) = 90 độ

\(\Rightarrow\Delta BAD\) ⊥ D

\(\Rightarrow BD\) \(\perp\) \(AC\)

Vì CE là tia phân giác của \(\widehat{BCA}\)

\(\Rightarrow\widehat{ECA}\) \(=30\) độ

\(\Rightarrow\widehat{EAC}+\widehat{ECA}=90\) độ

\(\Rightarrow\Delta AEC\perp E\)

\(\Rightarrow EC\perp AB\)

hiuhiuhiuhiu

24 tháng 12 2017

https://hoc24.vn//hoi-dap/question/455609.html

10 tháng 9 2019

b) Nếu các bạn chưa học tam giác cân thì làm như sau: VìΔBCD = ΔCBE cmt ⇒CD = BE

= Xét ΔBOE,ΔCODcó: = BE = CD cmt = cmt ⇒ΔBOE = ΔCOD g − c − g ⇒OB= OC(hai cạnh tương ứng) ( ) ^ CDB ^ BEC ^ EDO ^ ODC ( ) ^ BEO ^ CDO
10 tháng 9 2019

Hình bạn tự vẽ nha!

a) Vì \(\widehat{B}=\widehat{C}\left(gt\right)\)

\(BD\)\(CE\) là tia phân giác của \(\widehat{B}\)\(\widehat{C}\) cắt nhau tại O.

=> \(\left\{{}\begin{matrix}\widehat{DBC}=\widehat{ECB}\\\widehat{DBE}=\widehat{ECD}\end{matrix}\right.\)

Xét 2 \(\Delta\) \(BCD\)\(CBE\) có:

\(\widehat{BCD}=\widehat{CBE}\left(gt\right)\)

\(\widehat{DBC}=\widehat{ECB}\left(cmt\right)\)

Cạnh BC chung

=> \(\Delta BCD=\Delta CBE\left(g-c-g\right).\)

=> \(CD=BE\) (2 cạnh tương ứng)

b) Theo câu a) ta có \(\Delta BCD=\Delta CBE.\)

=> \(\widehat{ODC}=\widehat{OEB}\) (2 góc tương ứng)

Xét 2 \(\Delta\) \(OBE\)\(OCD\) có:

\(\widehat{OEB}=\widehat{ODC}\left(cmt\right)\)

\(BE=CD\left(cmt\right)\)

\(\widehat{DBE}=\widehat{ECD}\left(cmt\right)\)

=> \(\Delta OBE=\Delta OCD\left(g-c-g\right).\)

=> \(OB=OC\) (2 cạnh tương ứng)

c) Xét 2 \(\Delta\) vuông \(OBK\)\(OCH\) có:

\(\widehat{OKB}=\widehat{OHC}=90^0\left(gt\right)\)

\(OB=OC\left(cmt\right)\)

\(\widehat{DBE}=\widehat{ECD}\left(cmt\right)\)

=> \(\Delta OBK=\Delta OCH\) (cạnh huyền - góc nhọn)

=> \(OK=OH\) (2 cạnh tương ứng).

Chúc bạn học tốt!

28 tháng 11 2022

Sửa đề: Tia phân giác góc B cắt AC tại D. Tia phân giác góc C cắt AB tại E

a: Xét ΔABD và ΔACE có

góc ABD=góc ACE

AB=AC

góc A chung

Do đó: ΔABD=ΔACE
=>BD=CE

b: Xét ΔOEB và ΔODC có

góc EBO=góc DCO

EB=DC

góc OEB=góc ODC

DO đó: ΔEOB=ΔDOC

c: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

DO đó: ΔABO=ΔACO

=>góc BAO=góc CAO

=>AO là phân giác của tia phân giác của góc BAC

25 tháng 1 2017

a) Xét Tg AOB VÀ Tg COB, CÓ;

ab=ac(gt)

góc abo=góc cbo(gt)

BO LÀ CẠNH CHUNG 

=> Tg AOB= Tg COB(C-G-C)=> OA=OC(2 cạnh tương ứng)(1)

Xét Tg BOC và Tg AOC, CÓ;

AC=BC(gt)

GÓC aco= góc bco(gt)

OClà cạnh chung

=>Tg BOC= Tg COB(C-G-C)

=>BO=CO(2 cạnh tương ứng)(2) 

Từ (1) và (2)=> OA=OB=OC(ĐPCM)

b)Tg Abc đều =>Góc A= Góc B =Góc C=60 độ 

=>góc BAO=OAC=ACO=BCO=ABO=CBO=30 ĐỘ 

Mà Tg ABO=Tg BCO=Tg ACO (cmt)

=>O1 = O2 = O3=180-30-30=120 độ

vậy Góc AOB=BOC=AOC=120 độ

17 tháng 1 2018

A C B D E O N M

a) Ta có \(\widehat{B}+\widehat{C}=90^o\) mà \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{B}}{2};\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\) nên \(\widehat{B_2}+\widehat{C_2}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{90^o}{2}=45^o\)

Xét tam giác BOC, có \(\widehat{BOC}+\widehat{B_2}+\widehat{C_2}=180^o\Rightarrow\widehat{BOC}=180^o-45^o=135^o\)

b) Xét tam giác BAD và BMD có:

Cạnh BD chung

\(\widehat{B_1}=\widehat{B_2}\)

AB = MB  (gt)

\(\Rightarrow\Delta BAD=\Delta BMD\left(c-g-c\right)\)

\(\Rightarrow\widehat{BMD}=\widehat{BAD}=90^o\)

Hoàn toàn tương tự \(\Delta EAC=\Delta ENC\left(c-g-c\right)\Rightarrow\widehat{ENC}=\widehat{EAC}=90^o\)

Ta có EN và DM cùng vuông góc với BC nên EN // DM

c) Theo câu b, \(\Delta BAD=\Delta BMD\Rightarrow AD=MD;\widehat{BDA}=\widehat{BDM}\)

Từ đó ta có \(\Delta OAD=\Delta OMD\left(c-g-c\right)\Rightarrow OA=OM.\)

Tương tự : \(\Delta OAE=\Delta ONE\left(c-g-c\right)\Rightarrow OA=ON.\)

Vậy nên OA = OM = ON

d) Ta có \(\Delta OAD=\Delta OMD\left(c-g-c\right)\Rightarrow\widehat{OAD}=\widehat{OMD}\)

\(\Delta OAE=\Delta ONE\left(c-g-c\right)\Rightarrow\widehat{OAE}=\widehat{ONE}\)

\(\Rightarrow\widehat{ONE}+\widehat{OMD}=\widehat{OAE}+\widehat{OAD}=\widehat{EAD}=90^o\)

\(\Rightarrow\widehat{NOM}=90^o\)  (Dạng bài qua O kẻ đường thẳng song song với EN và DM)

Vậy tam giác OMN vuông cân hay \(\widehat{ONM}+\widehat{OMN}=90^o\)

Xét tam giác AMN có \(\widehat{MAN}+\widehat{ANM}+\widehat{AMN}=180^o\)

\(\Leftrightarrow\widehat{MAN}+\widehat{ANO}+\widehat{ONM}+\widehat{AMO}+\widehat{OMN}=180^o\)

\(\Leftrightarrow\widehat{MAN}+\widehat{NAO}+\widehat{MAO}=180^o-90^o=90^o\)

\(\Leftrightarrow\widehat{2MAN}=90^o\)

\(\Leftrightarrow\widehat{MAN}=45^o\)

6 tháng 3 2018

A B C D E H I

XÉT \(\Delta BDC\)VÀ \(\Delta CEB\)

    ^E=^D=\(90^0\)

      BC chung                =>\(\Delta BDC=\Delta CEB\left(ch-gn\right)\)

     ^BCB=^EBC

=> ^DBC=^ECB mà ^ABC=^ACB nên ^IBE=^ICD

ta lại có EB=DC mà AB=AC nên AD=AE

Xét \(\Delta AEI\)VÀ \(\Delta ADI\)

      AE=AD

      ^E=^D=\(90^0\)           =>\(\Delta AEI=\Delta ADI\left(ch-cgv\right)\)

        AI  chung                  =>^EAI=^DAI

XÉT \(\Delta ABH\)\(\Delta ACH\)

    AB=AC

    AH chung              =>\(\Delta ABH=\Delta ACH\left(c-g-c\right)\)

    ^EAI=^DAI           =>^AHB=^AHC

MÀ ^AHB  + ^AHC=\(180^0\)NÊN ^AHB=^AHC=\(90^0\)

VẬY \(AH\perp BC=\left\{H\right\}\)