Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔAME có
AB=AM
góc BAE=góc MAE
AE chung
Do đo ΔABE=ΔAME
b: Ta có: AB=AM
EB=EM
Do đó: AE là đường trung trực của BM
hay AE đi qua trung điểm của BM
c: Xét ΔAMK và ΔABC có
gíc AMK=góc ABC
AM=AB
góc MAK chung
DO đo: ΔAMK=ΔaBC
d: Tacó: BE=EM
mà EM<EC
nên BE<EC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Xét \(\Delta ABD\)và \(\Delta EBD\)có:
\(AB=EB\) (gt)
\(\widehat{ABD}=\widehat{EBD}\) (gt)
\(BD\) cạnh chung
suy ra: \(\Delta ABD=\Delta EBD\) (c.g.c)
b) \(\Delta ABD=\Delta EBD\) \(\Rightarrow\)\(AD=ED\)(2 cạnh tương ứng); \(\widehat{BAD}=\widehat{BED}=90^0\)(2 góc tương ứng)
Xét 2 tam giác vuông: \(\Delta DAM\)và \(\Delta DEC\)có:
\(DA=DE\) (cmt)
\(\widehat{ADM}=\widehat{EDC}\) (dd)
suy ra: \(\Delta DAM=\Delta DEC\) (cạnh góc vuông - góc nhọn kề cạnh ấy)
\(\Rightarrow\)\(AM=EC\)(2 cạnh tương ứng)
c) \(\Delta DAE\) cân tại D (do DA = DE)
\(\Rightarrow\)\(\widehat{DAE}=\widehat{DEA}\)
mà \(\widehat{DAM}=\widehat{DEC}\) ( \(=90^0\))
suy ra: \(\widehat{DAE}+\widehat{DAM}=\widehat{DEA}+\widehat{DEC}\)
hay \(\widehat{MAE}=\widehat{AEC}\) (đpcm)
a) Xét tam giác ABD và EBD có :
BA = BE;
Cạnh BD chung
\(\widehat{ABD}=\widehat{EBD}\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b) Do \(\Delta ABD=\Delta EBD\Rightarrow AD=ED;\widehat{BAD}=\widehat{BED}=90^o\)
nên \(\widehat{DAM}=\widehat{DEC}\)
Vậy thì \(\Delta ABM=\Delta EDC\left(g-c-g\right)\)
\(\Rightarrow AM=EC\)
c) Ta có DA = DE nên \(\widehat{DAE}=\widehat{DEA}\)
Vậy nên \(\widehat{AEC}=\widehat{DEC}+\widehat{AED}=\widehat{DAM}+EAD=\widehat{EAM}\)
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
B A C H D E K M
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
a ) Xét tam giác ABE và tam giác AME có :
AB = AM ( GT )
Góc BAE = Góc MAE ( AE là p/g góc A )
AE chung
=> tam giác ABE = tam giác AME ( c . g . c )
b ) Gọi giao điểm của AE với BM là H
Xét tam giác ABH và tam giác AMH có :
AB = AM ( GT )
Góc BAH = góc MAH ( AH là p/g góc A )
AH chung
=> tam giác ABH = tam giác AMH ( c . g . c )
=> BH = MH ( 2 cạnh tương ứng )
=> H là trung điểm BM
=> AE đi qua trung điểm BM ( Đpcm )
c ) và d ) : TỰ LÀM
Chúc bạn học tốt !!!