K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

Bài làm

a+b=x+y=>a2+2ab+b2=x2+2xy+y2=>2ab=2xy=>a2-2ab+b2

=x2-2xy+y2=>(a+b)2=(x-y)2=>\(\orbr{\begin{cases}a-b=x-y\\a-b=y-x\end{cases}}\)

\(+,a-b=x-y\Rightarrow a+b-\left(a-b\right)=x+y-\left(x-y\right)\Rightarrow2a=2x\Rightarrow a=x\Rightarrow b=y\)

\(\Rightarrow a^{2017}+b^{2017}=x^{2017}+y^{2017}\)

\(+,a-b=y-x\Rightarrow\left(a+b\right)+\left(a-b\right)=x+y+\left(y-x\right)\Rightarrow2a=2y\Rightarrow a=y\Rightarrow b=x\)

\(=x\Rightarrow a^{2017}+b^{2017}=x^{2017}+y^{2017}\Rightarrow\left(đpcm\right)\)

26 tháng 8 2019

Ê, giẻ rách, mày copy vừa thôi

4 tháng 8 2017

1/ Chứng minh nó chia hết cho 3:

Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.

\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.

\(\Rightarrow xy⋮3\)

Chứng minh chia hết cho 4.

Nếu cả x, y đều chẵn thì \(xy⋮4\)

Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ

\(\Rightarrow x=2k+1;y=2m;z=2n+1\)

\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m⋮2\)

\(\Rightarrow y⋮4\)

\(\Rightarrow xy⋮4\)

Với x, y đều lẻ nên z chẵn

\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)

\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này

Vậy \(xy⋮4\)

Từ chứng minh trên 

\(\Rightarrow xy⋮12\)

4 tháng 8 2017

2/ \(a+b=c+d\)

\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)

\(\Leftrightarrow2ab=2cd\)

\(\Leftrightarrow-2ab=-2cd\)

\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)

Kết hợp với \(a+b=c+d\)

\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)

\(\RightarrowĐPCM\)

12 tháng 10 2016

Từ gt suy ra :\(0=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)=\left(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}\right)+\left(\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\right)+\left(\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}\right)\)

\(=x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\left(1\right)\)

\(a^2,b^2,c^2\ne0\Rightarrow a^2,b^2,c^2>0\Rightarrow a^2+b^2+c^2>a^2;b^2;c^2\)

Thấy rằng trong mỗi dẫu ngoặc,phân thức đầu nhỏ hơn phân thức sau nên mỗi biểu thức trong dấu ngoặc đều âm mà a2,b2,c2 ko âm nên tổng (1) bằng 0 chỉ khi x2 = y2 = z2 = 0 <=> x = y = z = 0.Thay x,y,z = 0 vào 2 vế của đẳng thức cần chứng minh,ta có 2 vế bằng nhau (bằng 0) (đpcm)

22 tháng 12 2017

Em tham khảo tại đây nhé.

Câu hỏi của Phạm Minh Tuấn - Toán lớp 8 - Học toán với OnlineMath

23 tháng 12 2017

Còn bài số 2 thì sao cô??

11 tháng 12 2019

Dễ như 1+1=3

2 tháng 9 2017

T đi chơi rồi

làm giúp đi,khó quá ==