Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : S = 1 - 3 + 32 - 33 + 34 - 35 +...+ 398 - 399
=> 3S = 3 - 32 + 33 - 34 + 35 - 36 +...+ 399 - 3100
Lấy 3S + S = (3 - 32 + 33 - 34 + 35 - 36 +...+ 399 - 3100 ) + ( 1 - 3 + 32 - 33 + 34 - 35 +...+ 398 - 399 )
4S = 3100 + 1
=> \(S=\frac{3^{100}+1}{4}\Leftrightarrow3^{100}+1⋮4\) (vì sở dĩ tổng S là số nguyên)
=> 3100 : 4 dư 1
s chia hết cho 25 vì trong thừa số của s có 25 đó là 5^2
s không chia hết cho 31 vì trong thừa số của s không có 31
Cho S = 1-3+32-33+34-35+...+398-399
=> 3S=3-3^2+3^3=3^4+3^5-3^6+...+3^99-3^100
Cộng lại => 4S=1-3^100
=> S=(1-3^100)/4
Có 3^100=(3^2)^50
3^2 chia 4 dư 1 => (3^2)^50 cũng chia 4 dư 1
=> 3^100 chia 4 dư 1.
Xong r nhé bạn
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(\Leftrightarrow3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)
\(\Leftrightarrow3S+S=\left(3-3^2+3^3-3^4+...+3^{99}-3^{100}\right)+\left(1-3+3^2-3^3+...+3^{98}-3^{99}\right)\)
\(\Leftrightarrow4S=1-3^{100}\)
\(\Leftrightarrow S=\frac{1-3^{100}}{4}\)
Ta có :
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)chia 4 dư 1
\(\Rightarrow3^{100}\)chia 4 dư 1 ( ĐPCM)
S=5+5^2+5^3+5^4.....+5^99+5^100
S=(5.1+5.5)+(5^3.1+5^3.5)+...+(5^99.1+5^99.5)
S=5.(1+5)+5^3.(1+5)+...+5^99.(1+5)
S=6.(5+5^3+...+5^99) chia hết cho 6
0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)
\(b,S6=1-5^{100}\\ 1-S6=5^{100}\)
=> 5100 chia 6 du 1
e đang cần gấp, có ai đến giúp e ko?