a) Chứng minh (d) luôn cắt (...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2015

cj ơi, nó có trog câu hỏi tương tự rồi ạ, cô Loan giải rồi ạ!!^^

7 tháng 6 2015

b) Phương trình hoành đọ giao điểm của (P) và (d) là:

x2 = mx + 1 

<=> x2 - mx - 1  = 0 

$\Delta$Δ = (-m)2 + 4 = m2 + 4 > 0 với mọi m

=>  Pt có 2 nghiệm pb với mọi m

=>  (P) luôn cắt (d) tại 2 điểm phân biệt A;B 

Theo Vi - et ta  có: xAxB = -1 < 0

=>   x; xB trái dấu => A; B nằm khác phía so với trục tung

 

AH
Akai Haruma
Giáo viên
23 tháng 1 2017

Lời giải:

a) Gọi \((x_o,y_o)\) là tọa độ điểm cố định mà $(d)$ đi qua

Khi đó \(y_o=mx_o+1\) phải luôn đúng với mọi \(m\in\mathbb{R}\)

\(\Rightarrow \left\{\begin{matrix} x_o=0\\ 1-y_o=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_o=0\\ y_o=1\end{matrix}\right.\)

Vậy $(d)$ luôn đi qua điểm cố định $(0;1)$

b) Vì hai điểm $A,B$ thuộc đồ thị \(y=x^2\) nên tung độ của chúng luôn lớn hơn hoặc bằng $0$. Do đó, $A,B$ luôn nằm cùng phía so với $Ox$, chắc bạn nhầm với $Oy$ rồi.

Phương trình hoành độ giao điểm \(x^2-mx-1=0\)

Ta có \(\Delta=m^2+4>0\) nên phương trình luôn có hai nghiệm phân biệt, tức là $(d)$ cắt $(P)$ tại hai điểm phân biệt $x_1,x_2$ thỏa mãn \(\left\{\begin{matrix} x_1+x_2=m\\ x_1x_2=-1\end{matrix}\right. (1)\).

\(x_1x_2=-1<0\Rightarrow x_1,x_2\) trái dấu. Do đó $A,B$ nằm khác phía so với $Oy$

c) Theo $(1)$ ta có: \(AB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=\sqrt{(x_1-x_2)^2+(mx_1-mx_2)^2}=\sqrt{(m^2+1)(m^2+4)}\)

\(d(O,AB)=\frac{|1|}{\sqrt{m^2+1}}\)\(\Rightarrow S_{OAB}=\frac{d(O,AB).AB}{2}=2\Leftrightarrow \sqrt{m^2+4}=4\)

\(\Leftrightarrow m=\pm\sqrt{12}\)

30 tháng 6 2021

a) Đường thẳng (d) đi qua điểm A(1 ;0) => x = 1; y = 0 

Do đó: 0 = 2m.1 + 1 <=> 2m = -1 <=> m = -1/2

b) Phương trình hoành độ giao điểm giữa đường thẳng (d) và hàm số (P): y = 2x2 là:

   2x2 = 2mx + 1  <=> 2x2 - 2mx - 1 = 0

\(\Delta'=\left(-m\right)^2+2=m^2+2>0\)

=> phương trình luôn có 2 nghiệm phân biệt

Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-\frac{1}{2}\end{cases}}\)

Theo bài ra, ta có: \(\hept{\begin{cases}x_1< x_2\\\left|x_2\right|-\left|x_1\right|=2021\end{cases}}\)

<=> \(\left(\left|x_2\right|-\left|x_1\right|\right)^2=2021^2\)

<=> \(x_1^2+x_2^2-2\left|x_1x_2\right|=2021^2\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|-\frac{1}{2}\right|=2021^2\)

<=> \(m^2+\frac{2.1}{2}-1=2021^2\)

<=> \(m^2=2021^2\)

<=> \(x=\pm2021\)

Vậy với m = \(\pm\)2021 để (d) vắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thõa mãn x1 < x2 và |x2| - |x1| = 2021

29 tháng 7 2017

Nguyễn Thị Ngọc Anh

Cho 2 đường thẳng (d1): y = mx - 2 và (d2): y = (m - 2)x + m,Chứng minh với mọi giá trị của m,đường thẳng (d1) luôn đi qua điểm cố định B,đường thẳng (d2) luôn đi qua điểm cố định C,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

29 tháng 7 2017

bạn lấy bài này ở đâu ra vậy?

26 tháng 3 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(\frac{1}{2}x^2+mx+m-1=0\Leftrightarrow x^2+2mx+2m-2=0\)

\(\Delta'=m^2-\left(2m-2\right)=m^2+2m+2=\left(m+1\right)^2+1>0\)

Vậy (P) cắt (d) tại 2 điểm pb