Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) để phương trình có 2 nghiệm : \(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\Delta'\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\left(m+2\right)^2-\left(m-3\right)\left(m+1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\6m+7\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{7}{6}\end{matrix}\right.\)
thay \(x_1=2\) vào phương trình ta có :
\(4\left(m-3\right)-4\left(m+2\right)+m+1=0\Leftrightarrow m=19\)
áp dụng hệ thức vi ét ta có : \(x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}=\dfrac{2\left(21\right)}{16}=\dfrac{21}{8}\)
\(\Rightarrow x_2=\dfrac{21}{8}-x_1=\dfrac{21}{8}-2=\dfrac{5}{8}\)
vậy ....................................................................................................
b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}\\x_1x_2=\dfrac{m+1}{m-3}\end{matrix}\right.\)
ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=10\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=10\Leftrightarrow\dfrac{2\left(m+2\right)}{m-3}:\dfrac{m+1}{m-3}=10\)
\(\Leftrightarrow\dfrac{2m+4}{m+1}=10\Leftrightarrow2m+4=10m+10\Leftrightarrow m=\dfrac{-3}{4}\left(L\right)\)
vậy không có m thỏa mãn điều kiện bài toán .
câu 2) a) để phương trình có 2 nghiệm cùng dấu \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'\ge0\\p>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\left(m+1\right)^2-\left(m-2\right)\left(m-1\right)\ge0\\\dfrac{m-1}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\5m-1\ge0\\\left(m-1\right)\left(m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ge\dfrac{1}{5}\\\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>2\) vậy \(m>2\)
b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m+1\right)}{m-2}\\x_1x_2=\dfrac{m-1}{m-2}\end{matrix}\right.\)
ta có : \(x_1^3+x_2^3=64\Leftrightarrow\left(x_1+x_2\right)^3-3\left(x_1x_2\right)\left(x_1+x_2\right)=64\)
\(\left(\dfrac{2m+2}{2-m}\right)^3+6\left(\dfrac{m-1}{m-2}\right)\left(\dfrac{m+1}{m-2}\right)=64\)
\(\Leftrightarrow\dfrac{\left(-2m-2\right)^3}{\left(m-2\right)^3}+\dfrac{6\left(m-1\right)\left(m+1\right)\left(m-2\right)}{\left(m-2\right)^3}=64\)
\(\Leftrightarrow\dfrac{-8m^3-24m^2-24m-8+6m^2-12m^3-6m+12}{m^2-6m^2+12m-8}=64\)
\(\Leftrightarrow\dfrac{-20m^3-18m^2-30m+4}{m^3-6m^2+12m-8}=64\)
\(\Leftrightarrow84m^3-402m^2+798m-516=0\)
giải nốt nha .
2x2+(2m−1)x+m−1=02x2+(2m−1)x+m−1=0
Δ=(2m−1)2−8(m−1)Δ=(2m−1)2−8(m−1)
=4m2−12m+9=(2m−3)2=4m2−12m+9=(2m−3)2
phương trình có 2 nghiệm phân biệt khi 2m−3≠02m−3≠0
xét 2 trường hợp
*TH1:2m−3>0⇔m>322m−3>0⇔m>32 (1)
x1=−(2m−1)−(2m−3)4=−m+1x1=−(2m−1)−(2m−3)4=−m+1
x2=−(2m−1)+2m−34=−12x2=−(2m−1)+2m−34=−12
3x1−4x2=−3m+3+2=−3m+5=113x1−4x2=−3m+3+2=−3m+5=11
⇔m=−2⇔m=−2 loại vì không thỏa đk (1)
*TH2:2m−3<0⇔m<322m−3<0⇔m<32 (2)
x1=−12x1=−12
x2=−m+1x2=−m+1
3x1−4x2=−32+4m−4=4m−112=113x1−4x2=−32+4m−4=4m−112=11
⇔m=338⇔m=338 loại vì không thỏa đk (2)
Vậy không tồn tại m để phương trình có 2 nghiệm thỏa mãn đk trên
9.3
\(pt:x^2+4x-1\)
\(\Delta=4^2-4.1.\left(-1\right)=20\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{-4+\sqrt{20}}{2}=-2+\sqrt{5}\\x_2=\frac{-4-\sqrt{20}}{2}=-2-\sqrt{5}\end{matrix}\right.\)
\(a.A=\left|x_1\right|+\left|x_2\right|=\left|-2+\sqrt{5}\right|+\left|-2-\sqrt{5}\right|=-2+\sqrt{5}+2+\sqrt{5}=2\sqrt{5}\)
b. Theo hệ thức Vi-et:
\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1.x_2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x^2_2=16-2x_1x_2=16-2.1=14\\x_1^2x_2^2=1\end{matrix}\right.\)
\(B=x_1^2\left(x_1^2-7\right)+x_2^2\left(x_2^2-7\right)=x_1^4-7x_1^2+x_2^4-7x^2_2=\left(x_1^2\right)^2+\left(x_2^2\right)^2-7\left(x^2_1+x^2_2\right)=\left(x^2_1+x^2_2\right)^2-2x_1^2x_2^2-7\left(x_1^2+x_2^2\right)=14^2-2.1-7.14=96\)
9.1 Để phương trình có hai nghiệm phân biệt thì :
\(\Delta'=2^2-2=2>0\)
Theo hệ thức Viei, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2\end{matrix}\right.\)
a) \(S=\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1.x_2}{x_1+x_2}=\frac{2}{4}=\frac{1}{2}\)
b) \(Q=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{4^2-2.2}{2}=6\)
c) \(K=\frac{1}{x_1^3}+\frac{1}{x_2^3}=\frac{\left(x_1+x_2\right)(\left(x_1+x_2\right)^2-3xy)}{\left(x_1.x_2\right)^3}=5\)
\(G=\frac{x_1}{x_2^2}+\frac{x_2}{x_1^2}=\frac{\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)}{\left(x_1x_2\right)^2}=10\)
Để pt có hai nghiệm thì \(\Delta'\ge0\Rightarrow m^2-\left(m^2-m+1\right)\ge0\Rightarrow m-1\ge0\Rightarrow m\ge1.\)
Khi đó theo hệ thức Viet: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m+1\end{cases}}\)
Vậy thì \(x_1^2+2mx_2=x_1^2+\left(x_1+x_2\right)x_2=9\)
\(\Rightarrow x_1^2+x_1.x_2+x_2^2=9\Rightarrow\left(x_1+x_2\right)^2-x_1x_2=9\)
\(\Rightarrow\left(2m\right)^2-m^2+m-1=9\Rightarrow3m^2+m-10=0\)
\(\Rightarrow\orbr{\begin{cases}m=-2\left(l\right)\\m=\frac{5}{3}\left(n\right)\end{cases}}\)
Cho tớ sửa đề làm cho nó dễ nhé == chứ x2^2 mà x1 thôi thì tớ ko có bt lm
Ta có : \(x^2+\left(-m+2\right)x-6=0\left(a=1;b=-m+2;c=-6\right)\)
Cái chỗ này là mk đổi dấu cho thuận một tí ko ko xét b đc )): lại 1 bước đi vạn dặm đau thì toang =))
\(\Delta=\left(-m+2\right)^2-4\left(-6\right)=m^2+4+24=m^2+28\) Vậy : Pt luôn có 2 nghiệm \(\forall x\)
Áp dụng hệ thức Vi et ta có : \(x_1+x_2=m-2;x_1x_2=-6\)
Theo bài ra ta có : \(x_2^2-x_1x_2+\left(m-2\right)x_1^2=16\)
\(\Leftrightarrow\left(x_1^2x_2^2\right)-x_1x_2+\left(m-2\right)=16\)
\(\Leftrightarrow\left(x_1x_2\right)^2-x_1x_2+m-2=16\)
\(\Leftrightarrow\left(-6\right)^2+6+m-2=16\)
\(\Leftrightarrow36+6+m-2=16\Leftrightarrow40+m-16=0\Leftrightarrow m=-24\)
\(\Delta'=2-m\ge0\Rightarrow m\le2\)
Kết hợp Viet và điều kiện đề bài ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=-2\\3x_1+2x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.\)
Mặt khác ta có \(x_1x_2=m-1\Rightarrow m-1=-35\Rightarrow m=-34\)
\(\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}\\y_1y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{x_1+x_2}{x_1x_2}\\y_1y_2=x_1x_2+\frac{1}{x_1x_2}+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-2-\frac{2}{m-1}=\frac{-2m}{m-1}\\y_1y_2=m-1+\frac{1}{m-1}+2=\frac{m^2}{m-1}\end{matrix}\right.\) (\(m\ne1\))
Theo Viet đảo, \(y_1;y_2\) là nghiệm của:
\(y^2+\frac{2m}{m-1}y+\frac{m^2}{m-1}\Leftrightarrow\left(m-1\right)y^2+2my+m^2=0\) \(\left(m\ne1\right)\)