Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Phân số có nghĩa khi \(x+3\ne0\)
\(\Leftrightarrow x\ne3\)
Vậy phân số có nghĩa khi x khác 3
b)
Với x- - 2
Ta có
\(A=\frac{-5}{-2+3}=\frac{-5}{1}=-5\)
Vậy với x= - 2 thì A= - 5
c)
A là số nguyên
<=> \(x+3\inƯ_5\)
<=> \(x+3\in\left\{1;5;-1;-3\right\}\)
<=> \(x\in\left\{-2;2;-1;-6\right\}\)
Vậy để A là số nghuyên thì \(x\in\left\{-2;2;-1;-6\right\}\)
a) Khi x = 3 thì : \(K=\frac{2.3+7}{3+1}=\frac{6+7}{4}=\frac{13}{4}\)
b)\(K=\frac{2x+7}{x+1}=\frac{2x+2+5}{x+1}=\frac{2\left(x+1\right)+5}{x+1}=2+\frac{5}{x+1}\)
Để K là số nguyên thì : \(5⋮x+1\Leftrightarrow x+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Leftrightarrow x\in\left\{-6;-2;0;4\right\}\)
c) \(K=\frac{2x+7}{x+1}=1\Leftrightarrow2x+7=x+1\Leftrightarrow x+6=0\Leftrightarrow x=-6.\)
a) Với x = -3
=> K = \(\frac{2.\left(-3\right)+7}{-3+1}=\frac{-6+7}{-2}=-\frac{1}{2}\)
b) Ta có:
K = \(\frac{2x+7}{x+1}=\frac{2\left(x+1\right)+5}{x+1}=2+\frac{5}{x+1}\)
Để K \(\in\)Z <=> \(5⋮x+1\) <=> \(x+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng :
x + 1 | 1 | -1 | 5 | -5 |
x | 0 | -2 | 4 | -6 |
Vậy ...
c)Ta có: K = 1
=> \(\frac{2x+7}{x+1}=1\)
=> \(2x+7=x+1\)
=> \(2x-x=1-7\)
=> \(x=-6\)
Bài 2 :x+1/3=x-3/4 <=>4.(x+1)=3.(x-3) 4x+4=3x-9 4x-3x=-9-4 x=-13
Bài 1:
ta có: \(\frac{17}{x+1}.\frac{x}{6}=\frac{17x}{6x+6}\)
Để 17x/6x+6 thuộc Z
=> 17x chia hết cho 6x + 6
=> 102x chia hết cho 6x + 6
102x + 102 - 102 chia hết cho 6x + 6
17.(6x+6) - 102 chia hết cho 6x+6
mà 17.(6x+6) chia hết cho 6x + 6
=> 102 chia hết cho 6x + 6
=> ...
bn tự lm típ nha!
Bài 2:
ta có: \(\frac{x+1}{3}=\frac{x-3}{4}\)
\(\Rightarrow4x+4=3x-9\)
\(\Rightarrow4x-3x=-9-4\)
\(x=-13\)
a, \(A=\frac{10x+13}{2x+4}\inℤ\Leftrightarrow10x+13⋮2x+4\)
\(\Rightarrow10x+20-7⋮2x+4\)
\(\Rightarrow5\cdot2x+5\cdot4-7⋮2x+4\)
\(\Rightarrow5\left(2x+4\right)-7⋮2x-4\)
\(5\left(2x+4\right)⋮2x+4\)
\(\Rightarrow7⋮2x-4\)
tới đây bn liệt kê Ư(7) rồi làm tiếp.
b, \(A=\frac{10x+13}{2x+4}=\frac{10x+20-7}{2x+4}=\frac{5\left(2x+4\right)}{2x+4}-\frac{7}{2x+4}=5-\frac{7}{2x+4}\)
để A đạt giá trị nhỏ nhất thì \(\frac{7}{2x+4}\) lớn nhất
=> 2x+4 là số nguyên dương nhỏ nhất
+ xét 2x+4 = 1
=> 2x = -3
=> x = -1,5 loại vì x thuộc Z
+ xét 2x+4=2
=> 2x = -2
=> x = -1 (tm)
vậy x = 1 và \(A_{min}=5-\frac{7}{2}=\frac{3}{2}\)
a) ta có: \(\frac{x+6}{x+1}=\frac{x+1+5}{x+1}=1+\frac{5}{x+1}\)
Để \(\frac{x+6}{x+1}\in Z\)
=> 5/x+1 thuộc Z
=> 5 chia hết cho x + 1
=> x + 1 thuộc Ư(5)={1;-1;5;-5}
...
rùi bn tự lập bảng xét giá trị hộ mk nha! câu b lm tương tự
c) ta có: \(\frac{2x+1}{x-3}=\frac{2x-6+7}{x-3}=\frac{2.\left(x-3\right)+7}{x-3}=2+\frac{7}{x-3}\)
...
\(a,\frac{x+6}{x+1}\inℤ\Leftrightarrow x+6⋮x+1\)
\(\Rightarrow x+1+5⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow5⋮x+1\)
\(\Rightarrow x+1\inƯ\left(5\right)\)
\(\Rightarrow x+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow x\in\left\{-2;0;-6;4\right\}\)
vậy_
\(c,\frac{2x+1}{x-3}\inℤ\Leftrightarrow2x+1⋮x-3\)
\(\Rightarrow2x-6+7⋮x-3\)
\(\Rightarrow2\left(x-3\right)+7⋮x-3\)
\(2\left(x-3\right)⋮x-3\)
\(\Rightarrow7⋮x-3\)
\(\Rightarrow x-3\inƯ\left(7\right)\)
\(\Rightarrow x-3\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow x\in\left\{2;4;-4;10\right\}\)
vậy_
phần b thì làm tương tự phần a
Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)
2.a.x/7+1/14=(-1)/y
<=>2x/14+1/14=(-1)/y
<=>2x+1/14=(-1)/y
=>(2x+1).y=14.(-1)
<=>(2x+1).y=(-14)
(2x+1) và y là cặp ước của (-14).
(-14)=(-1).14=(-14).1
Ta có bảng giá trị:
2x+1 | -1 | 14 | 1 | -14 |
2x | -2 | 13 | 0 | -15 |
x | -1 | 13/2 | 0 | -15/2 |
y | 14 | -1 | -14 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x,y) thuộc{(-1;14);(0;-14)}
b.x/9+-1/6=-1/y
<=>2x/9+-3/18=-1/y
<=>2x+(-3)/18=-1/y
=>[2x+(-3)].y=-1.18
<=>(2x-3).y=-18
(2x-3) và y là cặp ước của -18
-18=-1.18=-18.1
Ta có bảng giá trị:
2x-3 | -1 | 18 | 1 | -18 |
2x | 2 | 21 | 4 | -15 |
x | 1 | 21/2 | 2 | -15/2 |
y | 18 | -1 | -18 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x;y) thuộc{(1;18);(4;-18)}
\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x.5}{-35}=\frac{5}{-35}\)
=> x . 5 = 5
x = 5 : 5
x = 1
1.
a. Gọi p là một ước chung của 12n + 1 và 30n + 2. Ta có:
12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5 ( 12n + 1 ) - 2 ( 30n + 2 ) chia hết cho d
=> 60n + 5 - 60n + 4 chia hết cho d
=> 1 chia hết cho d. Vậy d =1 hoặc d = -1
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản.
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\) \(< 1\)
\(A=\frac{2x-1}{x+1}=\frac{2\left(x+1\right)-3}{x+1}=2-\frac{3}{x+1}\)
Vậy để \(A\in Z\) thì \(x+1\inƯ\left(3\right)\)
Mà Ư(3)={1;-1;3;-3}
=>x+1={-1;1;3;-3}
+) x+1=-1<=>x=-2(tm)
+)x+1=1<=>x=0(tm)
+)x+1=3<=>x=2(tm)
+)x+1=-3<=>x=-4(tm)
Vậy x={-4;-2;0;2}
Giải( làm lại ):
Để A thuộc Z thì \(2x-1⋮x+1\)
Ta có:
\(2x-1⋮x+1\)
\(\Rightarrow\left(2x+2\right)-3⋮x+1\)
\(\Rightarrow2\left(x+1\right)-3⋮x+1\)
\(\Rightarrow-3⋮x+1\)
\(\Rightarrow x+1\in\left\{\pm1;\pm3\right\}\)
+) \(x+1=1\Rightarrow x=0\)
+) \(x+1=-1\Rightarrow x=-2\)
+) \(x+1=3\Rightarrow x=2\)
+) \(x+1=-3\Rightarrow x=-4\)
Vậy \(x\in\left\{0;-2;2;-4\right\}\)