Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(25\%.y+50\%.y-\frac{3}{4}.y+4.y=10\)
\(y.\left(\frac{1}{4}+\frac{1}{2}-\frac{3}{4}+4\right)=10\)
\(y.4=10\)
\(y=\frac{5}{2}\)
\(x.\frac{1}{4}-\frac{3}{4}=6:\frac{3}{4}\)
\(x.\frac{1}{4}-\frac{3}{4}=6.\frac{4}{3}\)
\(x.\frac{1}{4}=8+\frac{3}{4}\)
\(x.\frac{1}{4}=\frac{35}{4}\)
\(x=\frac{35}{4}:\frac{1}{4}\)
\(x=35\)
25% x y + 50% x y - 3/4 x y + 4 x y = 10
1/4 x y + 1/2 x y - 3/4 x y + 4 x y = 10
y x ( 1/4 + 1/2 - 3/4 + 4 ) = 10
y x 4 = 10
y = 10 : 4
y = 2.5
\(a,\frac{2}{3}.\left(3-x\right)+\frac{1}{2}=\frac{3}{4}.\left(2.x+1\right)
\)
\(2-\frac{2}{3}x+\frac{1}{2}=\frac{3}{2}.\frac{3}{4}x+\frac{3}{4}
\)
\(\frac{2}{3}x+2-\frac{1}{2}=\frac{9}{8}x+\frac{3}{4}\)
\(\frac{2}{3}x+\frac{3}{2}=\frac{9}{8}x+\frac{3}{4}\)
\(\frac{3}{2}-\frac{3}{4}=\frac{9}{8}x-\frac{2}{3}x\)
\(\frac{6}{4}-\frac{3}{4}=\frac{27}{24}x-\frac{16}{24}x\)
\(\frac{11}{24}x=\frac{3}{4}\)
\(x=\frac{3}{4}:\frac{11}{24}\)
\(x=\frac{3}{4}.\frac{24}{11}\)
\(x=\frac{18}{11}\)
\(Vậy
x=\frac{18}{11}\)
\(b,\frac{5-x}{3}=\frac{2x+1}{5}\)
\(\frac{\left(5-x\right).5}{15}=\frac{\left(2x+1\right).3}{15}\)
\(\Rightarrow\left(5-x\right).5=\left(2x+1\right).3\)
\(25-5x=6x+3\)
\(25-3=6x+5x\)
\(\Rightarrow11x=22\)
\(\Rightarrow x=22:11\)
\(\Rightarrow x=2\)
\(Vậy
x=2\)
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
a)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\Leftrightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)
Do đó \(x\in\left\{0;1;2\right\}\)
b)
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot...\cdot\frac{31}{64}=2^x\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{4\cdot6\cdot8\cdot...\cdot64}=2^x\Leftrightarrow\frac{31!}{\left(2\cdot2\right)\cdot\left(2\cdot3\right)\cdot\left(2\cdot4\right)\cdot...\cdot\left(2\cdot31\right)\cdot64}=2^x\)
\(\frac{31!}{2^{30}\cdot31!\cdot2^6}=2^x\Leftrightarrow\frac{1}{2^{36}}=2^x\Leftrightarrow2^{-36}=2^x\Rightarrow x=-36\)
a; \(\dfrac{-x}{4}\) = \(\dfrac{-2}{x}\)
-\(x.x\) = -2.4
-\(x^2\) = -8
\(x^2\) = 8
\(\left[{}\begin{matrix}x=-\sqrt{8}\\x=\sqrt{8}\end{matrix}\right.\)
Vậy \(x\in\) {-\(\sqrt{8}\); \(\sqrt{8}\)}
Bài 1 :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{9}{19}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{9}{19}\)
\(\Leftrightarrow1-\frac{1}{2x+3}=\frac{9}{19}\)
\(\Leftrightarrow\frac{1}{2x+3}=1-\frac{9}{19}\)
\(\Leftrightarrow\frac{1}{2x+3}=\frac{10}{19}\)
\(\Leftrightarrow10.\left(2x+3\right)=19\Leftrightarrow2x+3=\frac{19}{10}\)
\(\Leftrightarrow2x=\frac{19}{10}-3\Leftrightarrow2x=-\frac{11}{10}\)
\(\Leftrightarrow x=-\frac{11}{20}=-0,55\)
Bài 2 :
\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2016.2018}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{2016}-\frac{1}{2018}\)
\(=\frac{1}{2}-\frac{1}{2018}=\frac{504}{1009}\)
Bài 2 :x+1/3=x-3/4 <=>4.(x+1)=3.(x-3) 4x+4=3x-9 4x-3x=-9-4 x=-13
Bài 1:
ta có: \(\frac{17}{x+1}.\frac{x}{6}=\frac{17x}{6x+6}\)
Để 17x/6x+6 thuộc Z
=> 17x chia hết cho 6x + 6
=> 102x chia hết cho 6x + 6
102x + 102 - 102 chia hết cho 6x + 6
17.(6x+6) - 102 chia hết cho 6x+6
mà 17.(6x+6) chia hết cho 6x + 6
=> 102 chia hết cho 6x + 6
=> ...
bn tự lm típ nha!
Bài 2:
ta có: \(\frac{x+1}{3}=\frac{x-3}{4}\)
\(\Rightarrow4x+4=3x-9\)
\(\Rightarrow4x-3x=-9-4\)
\(x=-13\)