K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

Phương trình luôn có hai nghiệm \(x_1;x_2\). Theo định lý Viet ta có:

\(x_1+x_2=2\left(m-1\right)\)

\(x_1x_2=m^2-2m\)

Như vậy muốn được hệ thức giữa \(x_1;x_2\) không phụ thuộc vào m, ta phải tìm cách triệt tiêu m. Cụ thể ta có:

\(\frac{x_1+x_2}{2}=m-1\Rightarrow\frac{\left(x_1+x_2\right)^2}{4}=m^2-2m+1\)

Từ đó suy ra \(\frac{\left(x_1+x_2\right)^2}{4}-x_1x_2=m^2-2m+1-m^2+2m=1\)

hay ta có hệ thức: \(\left(x_1+x_2\right)^2-4x_1x_2=4\)

Chúc em học luôn học tập tốt :)

7 tháng 7 2017

a, Để phương trình  có 2 nghiệm \(x_1,x_2\)thì \(\Delta=\left(m-1\right)^2-\left(2m-4\right)=m^2-4m+5>0\)

Dễ thấy \(\Delta\ge1\forall m\)nên phương trình luôn có 2 nghiệm phân biệt

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=2m-4\end{cases}}\)

\(\left|x_1-x_2\right|=4\Rightarrow\left(x_1-x_2\right)^2=16\Rightarrow\left(x_1+x_2\right)^2-4x_1x_2=16\)

\(\Rightarrow4\left(m^2-2m+1\right)-4\left(2m-4\right)=16\)\(\Rightarrow m^2+2m-1=0\Rightarrow\orbr{\begin{cases}m=-1+\sqrt{2}\\m=-1-\sqrt{2}\end{cases}}\)

b. Ta có \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=2m-4\end{cases}\Rightarrow x_1+x_2-x_1.x_2}=2\) 

20 tháng 3 2021

a)\(\Delta\)=(2m+3)^2-4.(m^2-1)

        =12m+13

=>Phương trình có 2 nghiệm phân biệt<=>\(\Delta\ge0\)

Hay 12m+13>_0

<=>m>_-13/12

b)Vì phương trình có nghiệm x1=1 nên thay x=1 vào phương trình ta có

1^2-(2m+3)1+m^2-1=0

<=>m^2-2m-3=0

<=>m=-1 hoặc m=3

Áp dụng hệ thức Vi-ét ta có

x1.x2=m^2-1

=>x2=m^2-1

+)m=-1=>x2=0

+)m=3=>x2=8

c)Theo câu a ta có 

Phương trình có 2 nghiệm phân biệt<=>m>_-13/12

Áp dụng hệ thức Vi-ét ta có

x1+x2=2m+3 và x1.x2=m^2-1 (1)

Đặt A= x1^2+x2^2=(x1+x2)^2-2.x1.x2

Thay (1) vào A ta có

A=(2m+3)^2-2(m^2-1)

=4m^2+12m+11

=(2m+3)^2+2>_2 Hay GTNN của x1^2+x2^2 là 2

Dấu "=" xảy ra <=>2m+3=0<=>m=-3/2

d)Câu này dễ b tự lm nha

30 tháng 3 2021

a) Tại m = -2 thì PT trở thành:

\(x^2-2\left(-2-1\right)x+\left(-2\right)^2-1=0\)

\(\Leftrightarrow x^2+6x+3=0\)

\(\Delta^'=3^2-1\cdot3=6>0\)

Khi đó PT có 2 nghiệm phân biệt
\(x_1=-3+\sqrt{6}\) ; \(x_2=-3-\sqrt{6}\)

b) Theo hệ thức Viète ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(\frac{x_1+x_2}{2}+1\right)^2=m^2\\x_1x_2+1=m^2\end{cases}}\)

\(\Rightarrow\left(\frac{x_1+x_2}{2}+1\right)^2=x_1x_2+1\) là hệ thức liên hệ

21 tháng 5 2016

a) x1^2+x2^2=(x1+x2)^2-2x1x2

x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)

áp dụng viét thay vô

b) giải hệ pt

đenta>=0

x1+x2=-m

x1x2=m+3

và 2x1+3x2=5

c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại

d)áp dụng viét 

x1+x2=-m

x1x2=m+3

CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3