K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2022

Có : △ = ( -2m )2 - 4.1.( -4m - 4 )
            = 4m2 + 16m + 16
            = ( 2m )2 + 2.2m.4 + 42
            = ( 2m + 4 )2 > 0
-> △ > 0 => Phương trình luôn có 2 nghiệm phân biệt

9 tháng 6 2021

Để pt có hai nghiệm pb <=>\(\Delta>0\)<=> \(4m^2-16m+16>0\) <=>\(4\left(m-2\right)^2>0\left(lđ\right)\)

=> Pt luôn có hai nghiệm pb

Do \(x_1\) là một nghiệm của pt => \(x_1^2-2mx_1+4m-4=0\) <=> \(x_1^2=2mx_1-4m+4\)

Có \(x_1^2+2mx_2-8m+5=0\)

\(\Leftrightarrow2mx_1+2mx_2-4m+4-8m+5=0\)

\(\Leftrightarrow2m\left(x_1+x_2\right)-12m+9=0\)

\(\Leftrightarrow2m.2m-12m+9=0\)

\(\Leftrightarrow\left(2m-3\right)^2=0\)

\(\Leftrightarrow m=\dfrac{3}{2}\)

Vậy...

9 tháng 6 2021

\(\Delta'=m^2-4m+4=\left(m-2\right)^2\)

Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Rightarrow m\ne2\)

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4m-4\end{matrix}\right.\)

Ta có: \(x_1^2+2mx_2-8m+5=0\Rightarrow x_1^2+\left(x_1+x_2\right)x_2-8m+5=0\)

\(\Rightarrow x_1^2+x_2^2+x_1x_2-8m+5=0\Rightarrow\left(x_1+x_2\right)^2-x_1x_2-8m+5=0\)

\(\Rightarrow4m^2-4m+4-8m+5=0\Rightarrow4m^2-12m+9=0\)

\(\Rightarrow\left(2m-3\right)^2=0\Rightarrow m=\dfrac{3}{2}\)

24 tháng 4 2020

a) Thay m=1 vào phương trình ta được:

x2+2.1.x-6.1-9=0

<=> x2+2x-6-9=0

<=> x2+2x-15=0

<=> x2+5x-3x-15=0

<=> x(x+5)-3(x+5)=0

<=> (x-3)(x+5)=0

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)

b) Thay x=2 vào phương trình ta được:

22+2.2.m-6m-9=0

<=> 4+4m-6m-9=0

<=> -2x-5=0

<=> -2x=5

<=> \(x=\frac{-5}{2}\)

Ta có: \(\Delta'=2m^2+4>0\forall m\)

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m^2-4\end{matrix}\right.\)

Mặt khác: \(x_1^2+x_2^2=20\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)

\(\Rightarrow4m^2+2m^2-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=\dfrac{3}{2}\end{matrix}\right.\)

  Vậy ...

12 tháng 5 2021

sai rồi thì phải

17 tháng 3 2022

ê phải n.nam 9c ko

 

NV
19 tháng 12 2020

\(\Delta'=m^2-\left(m^2-1\right)=1>0\) nên pt luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt nên:

\(x_1^2-2mx_1+m^2-1=0\)

\(\Leftrightarrow x_1^2-2mx_1+m^2=1\)

\(\Rightarrow x_1^3-2mx_1^2+m^2x_1=x_1\)

\(\Rightarrow x_1^3-2mx_1^2+m^2x_1-2=x_1-2\)

Hoàn toàn tương tự, ta có: \(x_2^3-2mx_2^2+m^2x_2-2=x_2-2\)

Giả sử pt \(y^2+by+c=0\)  nhận \(x_1-2\) và \(x_2-2\) là nghiệm

\(\Rightarrow\left\{{}\begin{matrix}x_1-2+x_2-2=-b\\\left(x_1-2\right)\left(x_2-2\right)=c\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2-4=-b\\x_1x_2-2\left(x_1+x_2\right)+4=c\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=-b\\m^2-1-4m+4=c\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-\left(2m-4\right)\\c=m^2-4m+3\end{matrix}\right.\)

Vậy pt đó có dạng: \(x^2-\left(2m-4\right)x+m^2-4m+3=0\)

16 tháng 5 2018

pt có \(\Delta'\)=[-(m)]\(^2\)-(m-7)=m\(^2\)-m+7

                                           =m^2-m+\(\frac{1}{4}-\frac{1}{4}+7\)

                                            =(m-1/2)^2+27/4   ( Vì( m-1/2)^2>=0 mọi m nên (m-1/2)^2+27/4 >0 mọi m)\(\Rightarrow\)\(x^2-2mx+m-7=0\) luôn có hai nghiệm phân biệt với mọi m

16 tháng 5 2018

đen ta phẩy=m^2 - m + 7 = m^2 - 2 x m x 1/2 + 1/4 - 1/4 + 7 = (m-1/2)^2 + 15/2

TC: (m - 1/2)^2 > hoặc =0 với mọi m

suy ra (m - 1/2)^2 + 15/2 >0 với mọi m

Vậy phương trình luôn có 2 no phân biệt với mọi m