K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

pt có \(\Delta'\)=[-(m)]\(^2\)-(m-7)=m\(^2\)-m+7

                                           =m^2-m+\(\frac{1}{4}-\frac{1}{4}+7\)

                                            =(m-1/2)^2+27/4   ( Vì( m-1/2)^2>=0 mọi m nên (m-1/2)^2+27/4 >0 mọi m)\(\Rightarrow\)\(x^2-2mx+m-7=0\) luôn có hai nghiệm phân biệt với mọi m

16 tháng 5 2018

đen ta phẩy=m^2 - m + 7 = m^2 - 2 x m x 1/2 + 1/4 - 1/4 + 7 = (m-1/2)^2 + 15/2

TC: (m - 1/2)^2 > hoặc =0 với mọi m

suy ra (m - 1/2)^2 + 15/2 >0 với mọi m

Vậy phương trình luôn có 2 no phân biệt với mọi m

5 tháng 2 2020

a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).

Suy ra phương trình (1) luôn có nghiệm với mọi m.

b) Theo Vi-et ta có:

\(x_1+x_2=2m,x_1.x_2=m-4\)

Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

   \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)

    \(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)

   \(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)

  \(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)

  \(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)

  \(\Leftrightarrow m=0\)

23 tháng 5 2017

delta = b2 - 4ac = (-(m+2))2 - 4*1*(2m-1) = (m+2)2 - 4( 2m-1 ) = m2 + 4m +4 - 8m + 4 = m2 - 4m + 8 = (m-2)2 + 4

Ta có : \(\hept{\begin{cases}\left(m-2\right)^2>=0\left(voimoim\right)\\4>0\left(lđ\right)\end{cases}}\)

=> ( m-2)2 +4 >0 ( với mọi m )

=> delta > 0 => pt luôn có 2 nghiệm phân biệt

14 tháng 3 2022

\(\Delta=\left(2m\right)^2-4.1.\left[-\left(2m+3\right)\right]=4m^2+8m+12\)

\(=4.\left(m^2+2m+3\right)=4.\left(m+1\right)^2+8\ge8>0\)   ∀m

⇒ Phương trình đã cho luôn có 2 nghiệm phân biệt với mọi m (ĐPCM)

5 tháng 3 2022

Ta có:\(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m^2-2m+1\right)+2=\left(m-1\right)^2+2>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

\(a) x^2 - 2mx + 2m - 3 = 0.\)

\(∆ ' = m^2 -(2m-3) = m^2 -2m +1 +2 = (m-1) ^2 +2\)

\((m+1) ^2 ≥0 <=> (m+1)^2 +2 ≥2 >0\)

\(=> ∆'>0 <=> PT\) luôn có 2 nghiệm \(PB\) với mọi m

꧁༺๖ۣ๖ۣۜSkyღ๖ۣۜlạnh☯๖ۣۜlùngɠɠ༻꧂

22 tháng 3 2019

kb nhé

8 tháng 5 2019

12345x331=...///???......................ai nhanh  mk tk cho