Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Có \(\Delta'=m^2+1>0\)
Nên pt luôn có 2 nghiệm phân biệt (Không phải nghiệm trái dấu nhá)
Giải thích vì sao ko có nghiệm trái dâu :
Theo Vi-ét có \(\hept{\begin{cases}S=x_1+x_2=-1\\P=x_1.x_2=2m\end{cases}}\)
Vì tích bằng 2m chưa biết âm hay dương nên ko thể KL được
b, Ta có \(\left(x_1-x_2\right)^2+3x_1x_2=7\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=7\)
\(\Leftrightarrow1-2m=7\)
\(\Leftrightarrow m=-3\)
Bạn Incur nhầm vi ét rồi ạ.
\(x^2-2mx-1=0\)
a, \(\Delta'=m^2+1>0\Rightarrow\)Phương trình luôn có hai nghiệm phân biệt.
Ta thấy a.c = 1. (-1)= - 1 <0
Suy ra luôn có nghiệm trái dấu.
b, Theo vi ét ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-1\end{cases}}\)
\((x_1-x_2)^2+3x_1x_2=7\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=7\)
\(\Leftrightarrow4m^2+1=7\Leftrightarrow m^2=\frac{3}{2}\Leftrightarrow m=\pm\frac{\sqrt{6}}{2}\)
a, Để phương trình có 2 nghiệm phân biệt thì
\(\Delta>0< =>\left(-2m\right)^2-4.\left(2m^2-1\right)>0\)
\(< =>4m^2-8m^2+4>0\)
\(< =>-4m^2+4>0\)
\(< =>m< 1\)
b, bạn dùng viet và phân tích 1 xíu là ok
Ta có : \(x^2-2mx+2m^2-1=0\left(a=1;b=-2m;c=2m^2-1\right)\)
a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\left(-2m\right)^2-4\left(2m^2-1\right)>0\)
\(\Leftrightarrow4m^2-8m^2+4>0\Leftrightarrow-4m^2+4>0\)
\(\Leftrightarrow-4m^2>-4\Leftrightarrow m< 1\)
b, Theo hệ thức Vi et ta có : \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=\frac{2m}{1}=2m\\P=x_1x_2=\frac{c}{a}=\frac{2m^2-1}{1}=2m^2-1\end{cases}}\)
Ta có : \(x_1^3-x_1^2+x_2^3-x_2^2=2\)
Ta có thể viết là : \(x_1^3+x_2^3-\left(x_1^2+x_2^2\right)=2\)tương tự vs \(x_1^3+x_2^3-\left(x_1+x_2\right)^2=2\)
\(\Leftrightarrow x_1^3+x_2^3-\left(2m\right)^2=2\Leftrightarrow x_1^3+x_2^3-4m^2=2\)(*)
Phân tích nốt : cái \(x_1^3+x_2^3\)tớ ko biết phân tích thế nào, lm chỉ sợ sai
a/ thay m=-3 vào pt ta dc : x2 - 2 * (-1) *x -12 +3 = 0 => x2 +2x - 9 = 0
\(\Delta\)= 1 + 9 = 10 => x1 = -1 + căng 10
x2 = -1 - căng 10
b/ có : \(\Delta\)' = [ - (m+2) ] 2 - (4m + 3) = m2 + 4m + 4 - 4m - 3 = m2 + 1 > 0 vs mọi m => có 2 nghiệm pb
có : A = x12 + x22 - 10( x1 + x2) = (x1+x2)2 - 2x1x2 - 10( x1 + x2 ) = ( 2m + 4 )2 - 2 ( 4m + 3 ) - 10 ( 2m + 4 ) = 4m2 + 16m + 16 - 8m - 6 - 20m -40 = 4m2 -12m -30
rồi bn bấm máy tính ra kết quả nha ^^
a) Thay m=-3 vào phương trình ta được :
x2-2((-3)+2))x+4*(-3)+3=0
x2+2x-9=0
ta có đen ta phẩy =1+9=10
vì đen ta > 0 nên phương trình có 2 nghiệm phân biệt :
x1=-1-(căn 10)
x2=-1+(căn 10)
Vậy pt có nghiệm là {-1-(căn 10) ; -1+(căn 10)}
bn ơi mk chỉ lm đc phần a thôi phần b bn thử tính đen ta > 0 theo m ở pt ban đầu xem
b)
(mình chỉ gợi ý cách làm thôi nhé!)
Phần 1 tính delta Cm delta luôn >0
Phần 2 Xử dụng hệ thức Vi-et
Câu b bạn học công thức là làm được mà. Câu a thì dùng \(\Delta\)như bạn kia nói ý
\(x^2-2mx+m^2-m+4=0\)
a/ ( a = 1; b = -2m; c = m^2 - m + 4 )
\(\Delta=b^2-4ac\)
\(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)
\(=4m^2-4m^2+4m-16\)
\(=4m-16\)
Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)
Ta có: \(A=x_1^2+x_2^2-x_1x_2\)
\(=S^2-2P-P\)
\(=S^2-3P\)
\(=\left(2m\right)^2-3\left(m^2-m+4\right)\)
\(=4m^2-3m^2+3m-12\)
\(=m^2+3m-12\)
\(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)
\(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)
Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)
a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
để pt có ng khi Δ > 0 & Δ=0
=> m> hoặc = 4
\(\Delta'=m^2-\left(m^2-1\right)=1>0\) nên pt luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-2mx_1+m^2-1=0\)
\(\Leftrightarrow x_1^2-2mx_1+m^2=1\)
\(\Rightarrow x_1^3-2mx_1^2+m^2x_1=x_1\)
\(\Rightarrow x_1^3-2mx_1^2+m^2x_1-2=x_1-2\)
Hoàn toàn tương tự, ta có: \(x_2^3-2mx_2^2+m^2x_2-2=x_2-2\)
Giả sử pt \(y^2+by+c=0\) nhận \(x_1-2\) và \(x_2-2\) là nghiệm
\(\Rightarrow\left\{{}\begin{matrix}x_1-2+x_2-2=-b\\\left(x_1-2\right)\left(x_2-2\right)=c\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2-4=-b\\x_1x_2-2\left(x_1+x_2\right)+4=c\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=-b\\m^2-1-4m+4=c\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-\left(2m-4\right)\\c=m^2-4m+3\end{matrix}\right.\)
Vậy pt đó có dạng: \(x^2-\left(2m-4\right)x+m^2-4m+3=0\)