K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2016

a. Pt có 2 nghiệm phân biệt  =>>0 <=>b2-4ac>0 <=>(-6m+3)2-4.2.(-3m-1)>0<=>36m2-36m+9+24m+8>0 <=>36m2-12m+1+16>0

<=> (6m-1)2+16>0 với mọi m

Ta lại có 2 ngiệm âm => S=X1+X2<0 <=>-b/a<0 <=> (6m-3)/2<0 <=> 6m-3<0 <=> m<1/2

                                    P=X1.X2>0 <=> c/a >0 <=> (-3m+1)/2>0 <=> -3m+1>0 <=> m<1/3

Vậy Pt Pt có 2 nghiệm phân biệt đều âm khi m<1/2

b

4 tháng 3 2016

b.Ta có :X12+X22=(X1+X2)2-2X1X2=S2-2P=(-b/a)2-2c/a=(6m-3)2/4-2(-3m+1)/2. Ta quy đồng lên dc (36m2-36m+9+12m-4)/4=(36m2-24m+4+1)/4

=(6m-2)2/4+1/4 >=4 . Dấu "=" xảy ra khi 6m-2=0 <=> m=1/3

9 tháng 4 2018

tính delta rồi c/m cho (1) luôn có 2 ngiệm phân biệt

áp dụng định lí viet rồi thế vô là tìm dc m rồi xem điều kiên 

rồi kết luận

9 tháng 4 2018

\(x^2+2\left(m+2\right)x+4m-1=0\)    \(\left(1\right)\)  

\(\Delta'=\left(m+2\right)^2-4m+1\)

\(\Delta'=m^2+4m+4-4m+1\)

\(\Delta'=m^2+5>0\forall m\)

\(\Rightarrow pt\left(1\right)\)  luôn có 2 nghiệm pb \(\forall m\)

theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=-2\left(m+2\right)\\x_1.x_2=4m-1\end{cases}}\)

theo bài ra \(x^2_1+x^2_2=30\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-30=0\)

\(\Leftrightarrow\left[-2\left(m+2\right)\right]^2-2.\left(4m-1\right)-30=0\)

\(\Leftrightarrow4.\left(m^2+4m+4\right)-8m+2-30=0\)

\(\Leftrightarrow4m^2+16m+16-8m-28=0\)

\(\Leftrightarrow4m^2+8m-12=0\)

\(\Leftrightarrow m^2+2m-3=0\)  \(\left(#\right)\)

từ \(\left(#\right)\)  ta có \(a+b+c=1+2-3=0\)

\(\Rightarrow pt\left(#\right)\)  có 2 nghiệm \(m_1=1;m_2=-3\) ( TM \(\forall m\) ) 

vậy....

9 tháng 8 2017

a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình 

hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)

Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1

b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)

\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)

Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)

\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)

Vậy với \(m=0\)thỏa mãn yêu cầu bài toán 

17 tháng 5 2016

Câu này là hàm số lớp 9 đây :) Sẽ áp dụng Viet :) Cô hướng dẫn thôi nhé ^^

a. Ta tính được

 \(\Delta=\left(4m-1\right)^2-4.\left[2\left(m-4\right)\right]=16m^2-16m+33=\left(4m+2\right)^2+29\ge29>0\)

b. Biến đổi \(\left|x_1-x_2\right|=17\Leftrightarrow\left(x_1-x_2\right)^2=289\Leftrightarrow x_1^2+x_2^2-2x_1x_2=289\)

\(=\left(x_1+x_2\right)^2-4x_1x_2=289\)

Theo định lý Viet ta có: \(\hept{\begin{cases}x_1+x_2=1-4m\\x_1x_2=2\left(m-4\right)\end{cases}}\)

Từ đó; \(\left(1-4m\right)^2-4.2.\left(m-4\right)=289\Leftrightarrow16m^2-16m+33=289\Leftrightarrow16m^2-16m-256=0\)

Sau đó em sẽ tìm đc m :)))

1 tháng 5 2021

\(x^2-\left(2m+1\right)x+m^2+m-6=0\)

\(\Delta=\left(2m+1\right)^2-4m^2-4m+24\)

\(=4m^2+4m+1-4m^2-3m+24\)

\(=25>0\)

\(\Rightarrow\)pt luôn có hai nghiệm phân biệt \(x_1,x_2\)\(\forall m\)

Theo hệ thức Vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=2m+1\\x_1.x_2=m^2+m-6\end{cases}}\)

Ta có: \(\left(x_1-x_2\right)^2=x_1^2-2x_1x_2+x_2^2\)

                                  \(=\left(x_1+x_2\right)^2-4x_1x_2\)

                                  \(=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25\)

\(\Rightarrow x_1-x_2=\pm5\)

Ta có\(\left|x_1^2-x_2^2\right|=5\)

\(\Leftrightarrow\left|\left(x_1-x_2\right)\left(x_1+x_2\right)\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}\left|10m+5\right|=50\\\left|-10-5\right|=50\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}10m+5=50\\-10m-5=50\end{cases}}\)

( chỗ này mình ko biết trình bày đúng không vì có phá giá trị tuyệt đối thì nó vẫn là hoán vị thôi )

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{9}{2}\\m=\frac{-11}{2}\end{cases}}\)

Vậy \(m\in\left\{\frac{9}{2};\frac{-11}{2}\right\}\)để ...

( check hộ mình nha )