Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có để pt có 2 nghiệm phân biệt thì:
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m\right)>0\)
\(\Leftrightarrow m< 2\)
Theo vi-et ta có
\(\hept{\begin{cases}x_1+x_2=4-2m\\x_1x_2=m^2-2m\end{cases}}\)
Theo đề ta có: \(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-4x_1x_2}-\frac{1}{x_1x_2}=\frac{1}{5m}\)
\(\Leftrightarrow\frac{2}{\left(4-2m\right)^2-4\left(m^2-2m\right)}-\frac{1}{m^2-2m}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{1}{8-4m}-\frac{1}{m^2-2m}=\frac{1}{15m}\)
\(\Leftrightarrow19m+52=0\)
\(\Leftrightarrow m=\frac{52}{19}\)(loại)
Không có m thỏa cái trên
PS: Không biết có nhầm chỗ nào không. Bạn kiểm tra hộ m nhé
a. Pt có 2 nghiệm phân biệt =>>0 <=>b2-4ac>0 <=>(-6m+3)2-4.2.(-3m-1)>0<=>36m2-36m+9+24m+8>0 <=>36m2-12m+1+16>0
<=> (6m-1)2+16>0 với mọi m
Ta lại có 2 ngiệm âm => S=X1+X2<0 <=>-b/a<0 <=> (6m-3)/2<0 <=> 6m-3<0 <=> m<1/2
P=X1.X2>0 <=> c/a >0 <=> (-3m+1)/2>0 <=> -3m+1>0 <=> m<1/3
Vậy Pt Pt có 2 nghiệm phân biệt đều âm khi m<1/2
b
Xét phương trình : \(x^2-\left(2m+3\right)x+m=0\)
Ta có : \(\Delta=\left[-\left(2m+3\right)\right]^2-4.1.m\)
\(=4m^2+12m+9-4m=4m^2+8m+9\)
\(=\left(2m+2\right)^2+5\)
Có : \(\left(2m+2\right)\ge0\forall m\Rightarrow\left(2m+2\right)^2+5>0\)
\(\Rightarrow\)phương trình luôn có hai nghiệm phân biệt \(x_1\)và\(x_2\)
Theo hệ thức VI-ÉT ta có :
\(\hept{\begin{cases}x_1+x_2=2m+3\\x_1.x_2=m\end{cases}\left(^∗\right)}\)
Có : \(K=x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2\)
Thay \(\left(^∗\right)\)vào K ta được :
\(K=\left(2m+3\right)^2-2m\)
\(\Leftrightarrow K=4m^2+12m+9-2m\)
\(\Leftrightarrow K=4m^2+10m+9\)
\(\Leftrightarrow K=\left(2m+\frac{5}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy \(K_{min}=\frac{11}{4}\) đạt đc khi \(2m+\frac{5}{2}=0\Leftrightarrow m=-\frac{5}{4}\)
Áp dụng định lí viet ta có:
\(\hept{\begin{cases}x_1+x_2+x_3=5\\x_1x_2+x_2x_3+x_3x_1=2m+2\end{cases}}\)
Ta có: \(x_1^2+x_2^2+x_3^2=41\)
<=> \(\left(x_1+x_2+x_3\right)^2-2\left(x_1x_2+x_2x_3+x_3x_1\right)=41\)
<=> \(25-2\left(2m+2\right)=41\)
<=> \(m=-5.\)
a) Thay m=-2 vào phương trình, ta được:
\(x^2-\left(-x\right)-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
a=1; b=1; c=-2
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\)
a, \(\Delta=\left(5m-1\right)^2-4\left(6m^2-2m\right)=25m^2-10m+1-24m^2+8m\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\left(đpcm\right)\)
c, Theo hệ thức Vi-lét ta có: \(\hept{\begin{cases}x_1+x_2=5m-1\\x_1x_2=6m^2-2m\end{cases}}\)
\(\Rightarrow x^2_1+x^2_2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)
\(\Leftrightarrow25m^2-10m+1-12m^2+4m=1\)
\(\Leftrightarrow13m^2-6m=0\)
\(\Leftrightarrow m\left(13m-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\13m-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}\)
Vậy \(\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}\) thì pt có 2 nghiệm \(x_1;x_2\) thỏa mãn \(x^2_1+x^2_2=1\)
\(x^2-\left(2m+1\right)x+m^2+m-6=0\)
\(\Delta=\left(2m+1\right)^2-4m^2-4m+24\)
\(=4m^2+4m+1-4m^2-3m+24\)
\(=25>0\)
\(\Rightarrow\)pt luôn có hai nghiệm phân biệt \(x_1,x_2\)\(\forall m\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2m+1\\x_1.x_2=m^2+m-6\end{cases}}\)
Ta có: \(\left(x_1-x_2\right)^2=x_1^2-2x_1x_2+x_2^2\)
\(=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25\)
\(\Rightarrow x_1-x_2=\pm5\)
Ta có\(\left|x_1^2-x_2^2\right|=5\)
\(\Leftrightarrow\left|\left(x_1-x_2\right)\left(x_1+x_2\right)\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}\left|10m+5\right|=50\\\left|-10-5\right|=50\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}10m+5=50\\-10m-5=50\end{cases}}\)
( chỗ này mình ko biết trình bày đúng không vì có phá giá trị tuyệt đối thì nó vẫn là hoán vị thôi )
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{9}{2}\\m=\frac{-11}{2}\end{cases}}\)
Vậy \(m\in\left\{\frac{9}{2};\frac{-11}{2}\right\}\)để ...
( check hộ mình nha )