Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\Delta=\) \(\left(m-2\right)^2+4.8>0\)
=> Phương trình luôn có hai nghiệm \(x_1;x_2\)phân biệt.
Áp dụng định lí Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m+2\\x_1.x_2=-8\end{cases}}\)=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-m+2\right)^2+16\)
Khi đó: \(Q=\left(x_1^2-1\right)\left(x_2^2-1\right)=x_1^2.x_2^2-\left(x_1^2+x_2^2\right)+1=8^2-\left(m-2\right)^2-16+1\)
\(=-\left(m-2\right)^2+49\le49\)
Vậy min Q = 49 tại m=2
Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 16m
= 4( m2 + 2m + 1 ) - 16m
= 4m2 + 8m + 4 - 16m = 4m2 - 8m + 4
= 4( m2 - 2m + 1 ) = 4( m - 1 )2 ≥ 0 ∀ m
=> (1) luôn có nghiệm với mọi m
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=4m\end{cases}}\)
a) Để (1) có hai nghiệm đối nhau thì \(\hept{\begin{cases}x_1+x_2=0\\x_1x_2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}2m+2=0\\4m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m< 0\end{cases}}\Leftrightarrow m=-1\left(tm\right)\)
b) \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\left(ĐKXĐ:x_1,x_2\ne0\right)\)
\(\Leftrightarrow\frac{x_1^2}{x_1x_2}+\frac{x_2^2}{x_1x_2}=4\)
\(\Rightarrow x_1^2+x_2^2=4x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)
\(\Leftrightarrow4m^2+8m+4-24m=0\)
\(\Leftrightarrow m^2-4m+1=0\)
Đến đây bạn dùng công thức nghiệm rồi tính nốt nhé :)
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
\(m\ne-3\)
Phương trình đã cho tương đương: \(mx^2+\left(m-1\right)x+2m-1=0\)
a/ Bạn tự giải, quá dễ rồi
b/ Để pt có 2 nghiệm: \(\left\{{}\begin{matrix}m\ne0\\\Delta=\left(m-1\right)^2-4m\left(2m-1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne0\\\dfrac{1-2\sqrt{2}}{7}\le m\le\dfrac{1+2\sqrt{2}}{7}\end{matrix}\right.\)
Khi đó, do \(x_2\) là nghiệm của pt nên:
\(mx_2^2+\left(m-1\right)x_2+2m-1=0\Leftrightarrow mx_2^2+mx_2+2m-x_2-1=0\)
\(\Leftrightarrow m\left(x_2^2+x_2+2\right)=x_2+1\)
Và theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}=\dfrac{1}{m}-1\\x_1.x_2=2m-1\end{matrix}\right.\)
Thay vào biểu thức:
\(21x_1+7\left(x_2+1\right)=58\Leftrightarrow21x_1+7x_2=51\)
\(\Leftrightarrow14x_1+7\left(x_1+x_2\right)=51\Leftrightarrow14x_1=51-7\left(\dfrac{1}{m}-1\right)=58-\dfrac{7}{m}\)
\(\Rightarrow x_1=\dfrac{58m-7}{14m}\Rightarrow x_2=\dfrac{1-m}{m}-x_1=\dfrac{21-72m}{14m}\)
\(\Rightarrow\left(\dfrac{58m-7}{14m}\right).\left(\dfrac{21-72m}{14m}\right)=2m-1\)
Nhân chéo lên thành pt bậc 3 và bấm máy ra m
Nhưng kết quả quá xấu nên mình khẳng định luôn là bạn chép sai đề ở một chỗ nào đó, không một giáo viên nào cho đề kiểu xấu thế này bao giờ.
Cảm ơn bạn nhé, xin lỗi bạn, mình gõ đề sai thật đề đúng phải là
\(\dfrac{mx^2+\left(m-3\right)x+2m-1}{m+3}\)
Với lại bạn có lộn 1 chỗ là \(P=x_1.x_2=\dfrac{c}{a}=\dfrac{2m-1}{m}=\dfrac{2m}{m}-\dfrac{1}{m}=2-\dfrac{1}{m}\)