Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
Áp dụng hệ thức Vi-et, ta có :
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)
Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.
Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)
Suy ra \(MinA^2=0\Leftrightarrow m=-1\)
Vậy Min A = 0 \(\Leftrightarrow\)m = -1
ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+3\end{cases}}\)
\(A=m^2+3+2m+2=m^2+2m+5=\left(m+1\right)^2+4\ge4\)
Dấu ''='' xảy ra khi m = -1
Vậy GTNN A là 4 khi m =-1
dùng phương pháp Vi-ét ko hoàn toàn
(mình đăng lên youtube rồi đấy)
Ta có: \(\Delta=\) \(\left(m-2\right)^2+4.8>0\)
=> Phương trình luôn có hai nghiệm \(x_1;x_2\)phân biệt.
Áp dụng định lí Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m+2\\x_1.x_2=-8\end{cases}}\)=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-m+2\right)^2+16\)
Khi đó: \(Q=\left(x_1^2-1\right)\left(x_2^2-1\right)=x_1^2.x_2^2-\left(x_1^2+x_2^2\right)+1=8^2-\left(m-2\right)^2-16+1\)
\(=-\left(m-2\right)^2+49\le49\)
Vậy min Q = 49 tại m=2