K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2021

Đề bài của b thiếu vế phải nên mihf mặc định bằng 0 luôn nha.

a) m=-1 => \(x^2-x-2=0\)

Xét a-b+c=1+1-2=0

=>x1= -1 ; x2=2

b) Delta =\(\left(2m+1\right)^2-4\left(m^2+3m\right)=4m^2+4m+1-4m^2-12m=-8m+1\)

Pt có 2 nghiệm pb=> \(-8m+1\ge0\Leftrightarrow m\le\frac{1}{8}\)

ÁP dụng định lí Viets ta có:

x1+x2=-2m-1

x1.x2=\(m^2+3m\)

Ta có: x1.x2=4

=>\(m^2+3m=4\Leftrightarrow m^2+3m-4=0\)

Xét a+b+c=1+3-4=0

=>m1= 1(loại)

   m2=-4(thỏa mãn)

Vậy m=-4

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

14 tháng 10 2019

ta có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)\)

\(\Delta=4m^2-8m+9\)

\(\Delta=\left(2m-2\right)^2+5>0\)

do dó phương trình đã cho có 2 nghiệm phân biệt x1 ; x2

áp dụng định lí Vi-ét ta có: \(\hept{\begin{cases}s=x_1+x_2=2m-1\\p=x_1.x_2=m-2\end{cases}}\)

theo bài ra:   x13  +  x23 = 27 

<=> (x1 + x2 )3 - 3x1x2  (x1+x2)  - 27=0   <=>  (2m-1)3 - 3(m-2) ( 2m-1) -27 =0

<=>  8m3 -12m2 +6m-1 - 6m2 +15m - 6 - 27 =0

<=> 8m3 - 18m2 + 21m - 34 =0 <=>  (m-2)(8m2 -2m+17) = 0 

\(\Rightarrow\hept{\begin{cases}m-2=0\\8m^2-2m+17=0\left(PTVN\right)\end{cases}}\) <=> m=2

Vậy m=2 thỏa mãn đề bài

( chú giải: PTVN là phương trình vô nghiệm)

10 tháng 4 2021

a, Thay m = -1 vào phương trình trên ta được 

\(x^2+4x-5=0\)

Ta có : \(\Delta=16+20=36\)

\(x_1=\frac{-4-6}{2}=-5;x_2=\frac{-4+6}{2}=1\)

Vậy với m = -1 thì x = -5 ; x = 1 

b, Vì x = 2 là nghiệm của phương trình trên nên thay x = 2 vào phương trình trên ta được : 

\(4+8+3m-2=0\Leftrightarrow3m=-10\Leftrightarrow m=-\frac{10}{3}\)

Vậy với x = 2 thì m = -10/3 

c, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay 

\(16-4\left(3m-2\right)=16-12m+8=4m+8>0\)

\(\Leftrightarrow8>-4m\Leftrightarrow m>-2\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-4\\x_1x_2=\frac{c}{a}=3m-2\end{cases}}\)

\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow x_1=-4-x_2\)(1) 

suy ra : \(-4-x_2+2x_2=1\Leftrightarrow-4+x_2=1\Leftrightarrow x_2=5\)

Thay vào (1) ta được : \(x_1=-4-5=-9\)

Mà \(x_1x_2=3m-2\Rightarrow3m-2=-45\Leftrightarrow3m=-43\Leftrightarrow m=-\frac{43}{3}\)

NV
13 tháng 1 2022

a. Bạn tự giải

b.

\(\Delta=\left(m+2\right)^2-8m=\left(m-2\right)^2\ge0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne2\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)

Do \(x_2\) là nghiệm của pt \(\Rightarrow x_2^2-\left(m+2\right)x_2+2m=0\Rightarrow x_2^2=\left(m+2\right)x_2-2m\)

Thế vào bài toán:

\(\left(m+2\right)x_1+\left(m+2\right)x_2-2m\le3\)

\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m\le3\)

\(\Leftrightarrow\left(m+2\right)^2-2m\le3\)

\(\Leftrightarrow m^2+2m+1\le0\)

\(\Leftrightarrow\left(m+1\right)^2\le0\)

\(\Rightarrow m=-1\)

a: Khi m=4 thì (1) sẽ là:

x^2-6x-7=0

=>x=7 hoặc x=-1

b: Sửa đề: 2x1+3x2=-11

x1+x2=2m-2

=>2x1+3x2=-11 và 2x1+2x2=4m-4

=>x2=-11-4m+4=-4m-7 và x1=2m-2+4m+7=6m+5

x1*x2=-2m+1

=>-24m^2-20m-42m-35+2m-1=0

=>-24m^2-60m-34=0

=>\(m=\dfrac{-15\pm\sqrt{21}}{12}\)

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1