K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

1:

Δ=(2m-4)^2-4(m^2-3)

=4m^2-16m+16-4m^2+12=-16m+28

Để PT có hai nghiệm phân biệt thì -16m+28>0

=>-16m>-28

=>m<7/4

2: x1^2+x2^2=22

=>(x1+x2)^2-2x1x2=22

=>(2m-4)^2-2(m^2-3)=22

=>4m^2-16m+16-2m^2+6=22

=>2m^2-16m+22=22

=>2m^2-16m=0

=>m=0(nhận) hoặc m=8(loại)

3: A=x1^2+x2^2+2021

=2m^2-16m+2043

=2(m^2-8m+16)+2011

=2(m-4)^2+2011>=2011

Dấu = xảy ra khi m=4

a: Thay m=2 vào pt, ta được:

\(x^2-2x+2=0\)

hay \(x\in\varnothing\)

b: \(\Leftrightarrow\left(2m-2\right)^2-4\left(m^2-3m+4\right)>0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+12m-16>0\)

=>4m>12

hay m>3

17 tháng 1 2022

b, bạn làm bằng định lí Vi-ét đk ạ?

a: Khi m=1 thì (1) sẽ là:

x^2-4x-5=0

=>x=5 hoặc x=-1

a: Khi m=1 thì phương trình sẽ là x^2-2x-1=0

=>x^2-2x+1-2=0

=>(x-1)^2=2

=>\(x=\pm\sqrt{2}+1\)

b: Δ=(-2)^2-4*1*(-m^2)=4m^2+4>=4>0

=>Phương trình luôn có hai nghiệm phân biệt

5 tháng 5 2022

`a)` Thay `m = 1` vào ptr:

       `x^2 - 2 . 1 x + 1^2 - 1 + 1 = 0`

`<=>x^2 - 2x + 1 = 0`

`<=>(x - 1)^2=0`

`<=>x-1=0<=>x=1`

___________________________________________

`b)` Ptr có `2` nghiệm pb

`<=>\Delta' > 0`

`<=>b'^2-ac > 0`

`<=>(-m)^2-(m^2-m+1) > 0`

`<=>m^2-m^2+m-1 > 0`

`<=>m > 1`

5 tháng 5 2022

ko cảm ơn.-.

NV
13 tháng 1 2022

a. Bạn tự giải

b.

\(\Delta=\left(m+2\right)^2-8m=\left(m-2\right)^2\ge0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne2\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)

Do \(x_2\) là nghiệm của pt \(\Rightarrow x_2^2-\left(m+2\right)x_2+2m=0\Rightarrow x_2^2=\left(m+2\right)x_2-2m\)

Thế vào bài toán:

\(\left(m+2\right)x_1+\left(m+2\right)x_2-2m\le3\)

\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m\le3\)

\(\Leftrightarrow\left(m+2\right)^2-2m\le3\)

\(\Leftrightarrow m^2+2m+1\le0\)

\(\Leftrightarrow\left(m+1\right)^2\le0\)

\(\Rightarrow m=-1\)

10 tháng 4 2021

a, Thay m = -1 vào phương trình trên ta được 

\(x^2+4x-5=0\)

Ta có : \(\Delta=16+20=36\)

\(x_1=\frac{-4-6}{2}=-5;x_2=\frac{-4+6}{2}=1\)

Vậy với m = -1 thì x = -5 ; x = 1 

b, Vì x = 2 là nghiệm của phương trình trên nên thay x = 2 vào phương trình trên ta được : 

\(4+8+3m-2=0\Leftrightarrow3m=-10\Leftrightarrow m=-\frac{10}{3}\)

Vậy với x = 2 thì m = -10/3 

c, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay 

\(16-4\left(3m-2\right)=16-12m+8=4m+8>0\)

\(\Leftrightarrow8>-4m\Leftrightarrow m>-2\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-4\\x_1x_2=\frac{c}{a}=3m-2\end{cases}}\)

\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow x_1=-4-x_2\)(1) 

suy ra : \(-4-x_2+2x_2=1\Leftrightarrow-4+x_2=1\Leftrightarrow x_2=5\)

Thay vào (1) ta được : \(x_1=-4-5=-9\)

Mà \(x_1x_2=3m-2\Rightarrow3m-2=-45\Leftrightarrow3m=-43\Leftrightarrow m=-\frac{43}{3}\)

4 tháng 8 2021

\(a,m=3=>x^2+3x-2=0\)

\(\Delta=3^2-4\left(-2\right)=17>0\)

pt có 2 nghiệm pb \(\left[{}\begin{matrix}x1=\dfrac{-3+\sqrt{17}}{2}\\x2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)

b,\(\Delta=m^2-4\left(-2\right)=m^2+8>0\)

=> pt đã cho luôn có 2 nghiệm phân biệt x1,x2 với mọi m

theo vi ét \(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=-2\end{matrix}\right.\)

có \(x1^2x2+x2^2x1=2014< =>x1x2\left(x1+x2\right)=2014\)

\(< =>-2\left(-m\right)=2014< =>m=1007\)

a) Thay m=3 vào phương trình, ta được:

\(x^2+3x-2=0\)

\(\Delta=3^2-4\cdot1\cdot\left(-2\right)=9+8=17\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{17}}{2}\\x_2=\dfrac{-3+\sqrt{17}}{2}\end{matrix}\right.\)

30 tháng 4 2022

\(x^2-2\left(m+1\right)x+3m-3=0\left(1\right)\)

\(\Delta'>0\Leftrightarrow\left(m+1\right)^2-\left(3m-3\right)=m^2-m+4>0\left(đúng\forall m\right)\)

\(đk\) \(tồn\) \(tại:\sqrt{x1-1}+\sqrt{x2-1}\)

\(\Leftrightarrow1\le x1< x2\Leftrightarrow\left\{{}\begin{matrix}\left(x1-1\right)\left(x2-1\right)\ge0\\x1+x2-2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x1x2-\left(x1+x2\right)+1\ge0\\2\left(m+1\right)-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3m-2-2\left(m+1\right)+1\ge0\\m>0\end{matrix}\right.\)

\(\Leftrightarrow m\ge4\)

\(\Rightarrow\sqrt{x1-1}+\sqrt{x2-1}=4\Leftrightarrow x1+x2-2+2\sqrt{\left(x1-1\right)\left(x2-1\right)}=16\)

\(\Leftrightarrow2\left(m+1\right)+2\sqrt{x1.x2-\left(x1+x2\right)+1}=18\)

\(\Leftrightarrow\left(m+1\right)+\sqrt{3m-3-2\left(m+1\right)+1}=9\)

\(\Leftrightarrow m-4+\sqrt{m-4}=4\)

\(đặt:\sqrt{m-4}=t\ge0\Rightarrow t^2+t=4\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-1+\sqrt{17}}{21}\left(tm\right)\\t=\dfrac{-1-\sqrt{17}}{21}\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{m-4}=\dfrac{-1+\sqrt{17}}{21}\Leftrightarrow m=....\)

\(\)