Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi x=2 thì pt sẽ là 2^2-2(m-1)*2-2m-1=0
=>4-2m-1-4(m-1)=0
=>-2m+3-4m+4=0
=>-6m+7=0
=>m=7/6
a. Bạn tự giải
b.
\(\Delta=\left(m+2\right)^2-8m=\left(m-2\right)^2\ge0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne2\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)
Do \(x_2\) là nghiệm của pt \(\Rightarrow x_2^2-\left(m+2\right)x_2+2m=0\Rightarrow x_2^2=\left(m+2\right)x_2-2m\)
Thế vào bài toán:
\(\left(m+2\right)x_1+\left(m+2\right)x_2-2m\le3\)
\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m\le3\)
\(\Leftrightarrow\left(m+2\right)^2-2m\le3\)
\(\Leftrightarrow m^2+2m+1\le0\)
\(\Leftrightarrow\left(m+1\right)^2\le0\)
\(\Rightarrow m=-1\)
1:
\(\left\{{}\begin{matrix}\dfrac{2x+1}{x+1}+\dfrac{3y}{y-1}=1\\\dfrac{3x}{x+1}-\dfrac{4y}{y-1}=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2-\dfrac{1}{x+1}+3+\dfrac{3}{y-1}=1\\3-\dfrac{3}{x+1}-\dfrac{4y-4+4}{y-1}=10\end{matrix}\right.\)
=>-1/(x+1)+3/(y-1)=1-2-3=-5 và -3/(x+1)-4/(y-1)=10-3-4=3
=>x+1=13/11 và y-1=-13/18
=>x=2/11 và y=5/18
Δ=(m+1)^2-4(2m-8)
=m^2+2m+1-8m+32
=m^2-6m+33
=(m-3)^2+24>=24
=>Phương trình luôn có hai nghiệm pb
x1^2+x2^2+(x1-2)(x2-2)=11
=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11
=>(m+1)^2-(2m-8)-2(m+1)+4=11
=>m^2+2m+1-2m+8-2m-2-7=0
=>m^2-2m-8=0
=>(m-4)(m+2)=0
=>m=4 hoặc m=-2
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m-1)^2+2m+1=m^2+2\geq 0$
$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=2(m-1)$
$x_1x_2=-2m-1$
Khi đó:
$2x_1+3x_2+3x_1x_2=-11$
$\Leftrightarrow 2(x_1+x_2)+3x_1x_2+x_2=-11$
$\Leftrightarrow 4(m-1)+3(-2m-1)+x_2=-11$
$\Leftrightarrow x_2=2m-4$
$x_1=2(m-1)-x_2=2m-2-(2m-4)=2$
$-2m-1=x_1x_2=2(2m-4)$
$\Leftrightarrow -2m-1=4m-8$
$\Leftrightarrow 7=6m$
$\Leftrightarrow m=\frac{7}{6}$
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m-1)^2+2m+1=m^2+2\geq 0$
$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=2(m-1)$
$x_1x_2=-2m-1$
Khi đó:
$2x_1+3x_2+3x_1x_2=-11$
$\Leftrightarrow 2(x_1+x_2)+3x_1x_2+x_2=-11$
$\Leftrightarrow 4(m-1)+3(-2m-1)+x_2=-11$
$\Leftrightarrow x_2=2m-4$
$x_1=2(m-1)-x_2=2m-2-(2m-4)=2$
$-2m-1=x_1x_2=2(2m-4)$
$\Leftrightarrow -2m-1=4m-8$
$\Leftrightarrow 7=6m$
$\Leftrightarrow m=\frac{7}{6}$
Δ=(-2)^2-4(m-1)
=-4m+4+4
=-4m+8
Để phương trình có hai nghiệm phân biệt thì -4m+8>0
=>-4m>-8
=>m<2
x1^2+x2^2-3x1x2=2m^2+|m-3|
=>2m^2+|m-3|=(x1+x2)^2-5x1x2=2^2-5(m-1)=4-5m+5=-5m+9
TH1: m>=3
=>2m^2+m-3+5m-9=0
=>2m^2+6m-12=0
=>m^2+3m-6=0
=>\(m\in\varnothing\)
TH2: m<3
=>2m^2+3-m+5m-9=0
=>2m^2+4m-6=0
=>m^2+2m-3=0
=>(m+3)(m-1)=0
=>m=1 hoặc m=-3
a: Khi m=4 thì (1) sẽ là:
x^2-6x-7=0
=>x=7 hoặc x=-1
b: Sửa đề: 2x1+3x2=-11
x1+x2=2m-2
=>2x1+3x2=-11 và 2x1+2x2=4m-4
=>x2=-11-4m+4=-4m-7 và x1=2m-2+4m+7=6m+5
x1*x2=-2m+1
=>-24m^2-20m-42m-35+2m-1=0
=>-24m^2-60m-34=0
=>\(m=\dfrac{-15\pm\sqrt{21}}{12}\)