Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Bảng giá trị
x |
-2 |
-1 |
0 |
1 |
2 |
y = –x2 |
-4 |
-1 |
0 |
-1 |
-4 |
Đồ thị:
b) Xét phương trình hoành độ giao điểm của (d) và (P): –x2 = 4x – m ⇔ x2 + 4x – m = 0 (1)
(d) và (P) có đúng 1 điểm chung ⇔ phương trình (1) có nghiệm kép ⇔ ∆’ = 22 – (–m) = 0
ó 4 + m = 0 ⇔ m = –4
Vậy m = –4
Phương trình hoành độ giao điểm của (P) với (d):
\(\frac{-1}{4}x^2=\left(m+1\right)x+m^2+3\)
\(\Leftrightarrow x^2+4\left(m+1\right)x+4m^2+12=0\)
\(\Delta'=2^2\left(m+1\right)^2-4m^2-12\)
\(=4m^2+8m+4-4m^2-12\)
\(=8m-8\)
(P) và (d) không có điểm chung khi pt hoành độ giao điểm vô nghiệm.
\(\Leftrightarrow\Delta'< 0\Leftrightarrow8m-8< 0\)
\(\Leftrightarrow m< 1\)
Phương trình hoành độ giao điểm của (p) và (d) là
\(-\frac{1}{4}x^2=\left(m+1\right)x+m^2+3\)<=> \(\frac{1}{4}x^2+\left(m+1\right)x+m^2+3=0\)
\(\left(a=\frac{1}{4},b=m+1,c=m^2+3\right)\)
\(\Delta=b^2-4ac=\left(m+1\right)^2-4\cdot\frac{1}{4}\left(m^2+3\right)\)
\(=m^2+2m+1-m^2-3=2m-2\)
(p) và (d) không có điểm chung <=> \(\Delta< 0\)
<=> \(2m-2< 0\)<=> \(2m< 2\)<=> \(m< 1\)
Vậy với \(m< 1\)thì (p) và (d) không có điểm chung
Xét phương trình hoành độ giao điểm có :
\(-x^2=4x-m\Leftrightarrow x^2-4x-m=0\)
để hai đồ thị cắt tại đúng một điểm thì phương trình hoành đọ giao điểm có nghiệm kép hay
\(\Delta^'=2^2+m=0\Leftrightarrow m=-4\)
Phương trình hoành độ giao điểm:
x2 = 2x - m
<=> x2 - 2x + m = 0
Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)
<=> (-1)2 - m > 0
<=> 1 - m > 0
<=> m < 1
Ta có: y1 = x12
y2 = x22
y1 + y2 + x12x22 = 6(x1 + x2)
<=> x12 + x22 + x12x22 = 6(x1 + x2)
<=> (x1 + x2)2 - 2x1x2 + (x1x2)2 = 6(x1 + x2)
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)
<=> 22 - 2m + m2 = 6.2
<=> 4 - 2m + m2 = 12
<=> 4 - 2m + m2 - 12 = 0
<=> m2 - 2m - 8 = 0
<=> m = 4 (ktm) hoặc m = -2 (tm)
=> m = -2
a) Tự vẽ
b) Phương trình hoành độ giao điểm của (d) & (P) là
\(x^2=x+m-1\)
\(\Rightarrow x^2-x-m+1=0\)
(P) cắt (d) tại 1 điểm => PT chỉ có một nghiệm duy nhất
=> \(\Delta=0\)
Ta có \(\Delta=\left(-1\right)^2+4\left(m-1\right)=1+4m-4=4m-3\)
\(\Delta=0\Rightarrow4m-3=0\Rightarrow4m=3\Rightarrow m=\frac{3}{4}\)
Vậy với \(m=\frac{3}{4}\) thì (d) cắt (P) tại một điểm duy nhất
Chào Thục Nhi :)
b. Xét phương trình hoành độ giao điểm: \(-x^2=4x-m\Leftrightarrow x^2+4x-m=0\)
Để (d) giao (P) tại hai điểm phân biệt thì phương trình trên có 2 nghiệm phân biệt hay \(\Delta'>0\Leftrightarrow2^2+m>0\Leftrightarrow m>-4\)