Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GT : Nửa đường tròn tâm O đường kính AB , C thuộc nữa đường tròn , D nằm trên đoạn OA, tiếp tuyến Ax,By của nửa đường tròn . Qua C , đường thẳng vuông góc CD cắt tiếp tuyến Ax,By ở M và N ; AC cắt DM = {P} ; BC cắt DN = {Q}
KL : a) ADCM và BDCN nội tiếp đường tròn
b) Góc MDN = 90 độ
C . PQ//AB
Mik giải luôn nhé để nếu bạn cần thì có thể tham khảo luôn :
(Dưới đây là bài làm tham khảo , bạn có thể tham khảo nhé !)
Nguồn bài tham khảo nếu bạn muốn xem thêm cách làm khác :https://hoc24.vn/cau-hoi/cho-nua-duong-tron-tam-o-duong-kinh-ab-lay-diem-c-thuoc-nua-duong-tron-va-diem-d-tren-doan-oa-ve-cac-tiep-tuyen-axby-cua-nua-duong-tron-duong-than.222294491220
Cô hướng dẫn nhé nguyen van vu :)
K
a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)
b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.
c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.
Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)
nên ID =MD, mà MD=DB nên ID=DB.
Gọi K là giao của MH và AD.
Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)
Tương tự giao điểm của BC với MH cũng là trung điểm MH.
Tóm lại N trùng K hay MN vuông góc AB.
c) Gọi giao điểm của BM với Ax là I. Từ M kẻ MK vuông góc với AB. BC cắt MK tại E.
Vì MK vuông góc AB => MK // AC // BD
EK // AC => \(\frac{EK}{AC}=\frac{BE}{BC}\); ME // IC => \(\frac{ME}{IC}=\frac{BE}{BC}\) => \(\frac{EK}{AC}=\frac{ME}{IC}\)
Tam giác MIA vuông tại M có CA = CM => góc CAM = góc CMA => góc CIM = góc CMI => tam giác CMI cân tại C => CI = CM => CM = CI = CA => EK = ME.
\(EK=ME\Rightarrow\frac{EK}{BD}=\frac{ME}{BD}\)mà \(\frac{ME}{BD}=\frac{CM}{CD}=\frac{AK}{AB}\Rightarrow\frac{EK}{BD}=\frac{AK}{AB}\)
=> Tam giác AKE đồng dạng với tam giác ABD (c.g.c) => góc EAK = góc DAK => A,E,D thẳng hàng => BC cắt AD tại E mà theo giả thiết BC cắt AD tại N => E trùng với N => H trùng với K => N là trung điểm MH.
a: Xét tứ giác AMIO có
\(\widehat{MAO}+\widehat{MIO}=180^0\)
Do đó; AMIO là tứ giác nội tiếp
Xét (O) có
MI là tiếp tuyến
MA là tiếp tuyến
Do đó: MI=MA và OM là tia phân giác của góc IOA(1)
Xét (O) có
NI là tiếp tuyến
NB là tiếp tuyến
Do đó: NI=NB và ON là tia phân giác của góc IOB(2)
Ta có: MI+NI=MN
nên MN=MA+NB
b: Từ (1) và (2) suy ra \(\widehat{MON}=\widehat{MOI}+\widehat{NOI}=\dfrac{1}{2}\left(\widehat{IOA}+\widehat{IOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
Xét ΔMON vuông tại O có OI là đường cao
nên \(IM\cdot IN=OI^2\)
hay \(AM\cdot BN=R^2\)