K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

a, HS tự chứng minh

b, ΔCOD và ΔAMB đồng dạng => MC.MD =  O M 2

c, AC = R 3

BD.AC = MC.MD =  O M 2

=> BD =  R 3 3

30 tháng 11 2017

cau hoi sai

14 tháng 12 2017

dung roi cau hỏi sai

Theo tính chất hai tiếp tuyến cắt nhau ta có

a) ^COD=^O22 +^O32 =12 (^O1+^O2+^O3+^O4)=12 .180=90.

b) CD = CM + MD = CA + DB.

c) AC.BD=MC.MD=OM2AC.BD=MC.MD=OM2 (cố định).

22 tháng 8 2021

Theo tính chất hai tiếp tuyến cắt nhau ta có

a) ^COD=^O22 +^O32 =12 (^O1+^O2+^O3+^O4)=12 .180=90.

b) CD = CM + MD = CA + DB.

c) AC.BD=MC.MD=OM2AC.BD=MC.MD=OM2 (cố định).

a: Xét (O) có

CM,CA là tiếp tuyến

DO đó: CM=CA  và OC là phân giác của góc AOM

=>C nằm trên đường trung trực của MA(1)

Ta có: OA=OM

=>O nằm trên đường trung trực của MA(2)

từ (1) và (2) suy ra CO là đường trung trực của MA

OC là phân giác của góc AOM

=>\(\widehat{AOM}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến

Do đó: DM=DB và OD là phân giác của góc MOB

DM=DB

nên D nằm trên đường trung trực của BM(3)

OM=OB

=>O nằm trên đường trung trực của BM(4)

Từ (3) và (4) suy ra OD là là đường trung trực của BM

Ta có: OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)

=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

Xét tứ giác OACM có

\(\widehat{OAC}+\widehat{OMC}=90^0+90^0=180^0\)

=>OACM là tứ giác nội tiếp

=>\(\widehat{OAM}=\widehat{OCM}\)

Xét ΔCOD vuông tại O và ΔAMB vuông tại M có

\(\widehat{OCD}=\widehat{MAB}\)(cmt)

Do đó: ΔCOD đồng dạng với ΔAMB

b: Xét ΔOCD vuông tại O có OM là đường cao

nên \(MC\cdot MD=OM^2\)

=>\(MC\cdot MD=R^2\) không đổi khi M di chuyển trên (O)

c: AB=2R

=>OA=OB=AB/2=R

Ta có: ΔCAO vuông tại A

=>\(CA^2+AO^2=CO^2\)

=>\(CA^2+R^2=\left(2R\right)^2\)

=>\(CA^2=3R^2\)

=>\(CA=R\sqrt{3}\)

\(MC\cdot MD=R^2\)

mà MC=AC và DM=DB

nên \(AC\cdot BD=R^2\)

=>\(BD\cdot R\sqrt{3}=R^2\)

=>\(BD=\dfrac{R}{\sqrt{3}}\)