Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tứ giác $BCDE$ có\(\widehat{BEC}=\widehat{BDC}=90^0\) nên $BCDE$ là tứ giác nội tiếp
\(\Rightarrow \widehat{AED}=\widehat{ACB}\)
Do đó \(\triangle ADE\sim \triangle ABC\) (g.g)
\(\Rightarrow \frac{AD}{AB}=\frac{DE}{BC}=\frac{AM}{AH}\) (trong đó $AM, AH$ tương ứng là đường cao của 2 tam giác $ADE, ABC$)
\(\Rightarrow \frac{DE}{BC}.\frac{AM}{AH}=\left(\frac{AD}{AB}\right)^2\)
\(\Rightarrow \frac{2S_{ADE}}{2S_{ABC}}=\cos ^2A\Rightarrow S_{ADE}=S_{ABC}\cos ^2A\)
\(\Rightarrow S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}(1-\cos ^2A)=S_{ABC}\sin ^2A\)
Ta có đpcm.
a) Ta thấy \(\Delta ABD\sim\Delta AEC\to\frac{AE}{AD}=\frac{AC}{AB}\to\Delta ADE\sim\Delta ABC\) theo tỉ số đồng dạng \(k=\frac{AD}{AB}=\cos A\to\frac{S_{ADE}}{S_{ABC}}=k^2=\cos^2A.\)
b) Chắc viết nhầm, không có tứ giác ABCD mà chỉ có BCDE. Ta có \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}-S_{ABC}\cos^2C=S_{ABC}\left(1-\cos^2C\right)=S_{ABC}\cdot\sin^2C.\)
a: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
Xét ΔAED và ΔACB có
góc AED=góc ACB
góc EAD chung
DO đó: ΔAED đồng dạng với ΔACB
=>\(\dfrac{S_{AED}}{S_{ACB}}=\left(\dfrac{AE}{AC}\right)^2=cos^2A\)
hay \(S_{ADE}=S_{ACB}\cdot cos^2A\)
b: \(S_{BCDE}=S_{ABC}-S_{ABC}\cdot cos^2A=S_{ABC}\cdot sin^2A\)
C B A E D
Ta có : CDEB có góc CEB = góc BDC = 900
=> CDEB là tứ giác nội tiếp => góc AED = góc BCA (góc ngoài tứ giác nội tiếp)
Xét tam giác AED và tam giác ACB có góc A chung, góc AED = góc BCA
=> Tam giác AED đồng dạng với tam giác ACB (g.g)
=> \(\frac{S_{AED}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=cos^2A\)
\(\Rightarrow S_{ADE}=cos^2A\times S_{ABC}\)
Lại có : \(S_{BCDE}+S_{ADE}=S_{ABC}\Rightarrow S_{BCDE}=S_{ABC}-S_{ADE}\)
\(=S_{ABC}-cos^2A\times S_{ABC}\)
\(=S_{ABC}\left(1-cos^2A\right)=sin^2A\times S_{ABC}\)(vì \(sin^2A+cos^2A=1\))
Dễ dàng chứng minh \(\Delta ADE\approx\Delta ABC\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\)\(\Rightarrow AD.AE=\frac{AB}{AC}.AE^2\Leftrightarrow\frac{1}{2}.AD.AE.\sin EAD=\frac{1}{2}.AB.AC.\cos^2EAD.\sin EAD\)
\(\Rightarrow S_{AED}=S_{ABC}.\cos EAD\)
\(S_{BDEC}=S_{ABC}-S_{AED}=S_{ABC}-S_{ABC}.\cos^2EAD=S_{ABC}\left(1-\cos^2EAD\right)=S_{ABC}.\sin^2EAD\)
Akai Haruma giải giúp em câu a thôi được không ạ, em cảm ơn nhiều.
tự vẽ hình nhé
AC2+BC2-AB2=AK2+KC2+BK2+KC2+2BK.CK-AK2-BK2
=2KC2+2BK.CK=2KC(KC+BK)
AB2+BC2-CA2=BK2+AK2+BK2+KC2+2BK.CK-AK2-KC2
2BK2+2BK.CK=2BK(BK+CK)
➜AC2+BC2-AB2/AB2+BC2-CA2=2KC(KC+BK)/2BK(BK+CK)
=KC/BK
Giải câu a thôi cũng được
Giúp mình đi, mai mình phải nộp bài rồi
m.n ơj giúp vs. e đag cần gấp ạ