K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 9 2020

Ta có: \(4!>4.3\) ; \(5!>5.4\) ;....; \(n!>n\left(n-1\right)\)

\(\Rightarrow VT=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}< 1+\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n-1\right)}\)

\(VT< 1+\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(VT< 2-\frac{1}{n}< 2\) (đpcm)

9 tháng 4 2017

a) Dễ thấy bất đẳng thức đúng với n = 2

Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là

3k > 3k + 1

Nhân hai vế của (1) vơi 3, ta được:

3k + 1 > 9k + 3 <=> 3k + 1 > 3k + 4 + 6k -1.

Vì 6k - 1 > 0 nên

3k + 1 > 3k + 4 hay 3k + 1 > 3(k + 1) + 1.

tức là bất đẳng thức đúng với n = k + 1.

Vậy 3n > 3n + 1 với mọi số tự nhiên n ≥ 2.

b) Với n = 2 thì vế trái bằng 8, vế phải bằng 7. Vậy bất đẳng thức đúng với n = 2

Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là

2k + 1 > 2k + 3 (2)

Ta phải chứng minh nó cũng đúng với n= k + 1, nghĩa là phải chứng minh

2k + 2 > 2(k + 1) + 3 <=> 2k + 2 > 2k + 5

Nhân hai vế của bất đẳng thức (2) với 2, ta được:

2k + 2 > 4k + 6 <=> 2k + 2 > 2k +5 + 2k + 1.

Vì 2k + 1> 0 nên 2k + 2 > 2k + 5

Vậy 2n + 1 > 2n + 3 với mọi số tự nhiên n ≥ 2.



NV
23 tháng 2 2020

\(A=lim\frac{\sqrt{n+2}+\sqrt{n+1}}{1}=lim\left[n\left(\sqrt{1+\frac{2}{n}}+\sqrt{1+\frac{1}{n}}\right)\right]=+\infty.2=+\infty\)

\(B=lim\frac{8^3.64^n-9.27^n}{4^4.64^n+5^3.25^n}=\frac{8^3-9.\left(\frac{27}{64}\right)^n}{4^4+5^3\left(\frac{25}{64}\right)^n}=\frac{8^3}{4^4}=2\)

\(1;-\frac{1}{2};\frac{1}{4}...\) là dãy cấp số nhân lùi vô hạn có \(u_1=1\)\(q=-\frac{1}{2}\)

Do \(\left|q\right|< 1\) nên theo công thức tổng cấp số nhân:

\(S_n=\frac{u_1}{1-q}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}\)

22 tháng 2 2020

câu tính tổng S mk làm đc oy nhé k cần lm câu đó nữa đâu