Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phạm Dương Ngọc Nhi thế thì bạn học pp này đi. Cái pp này giúp cm nhiều bài một cách dễ dàng
\(1-cos^2x+1-cos^2y=\frac{1}{4}\Rightarrow cos^2x+cos^2y=\frac{7}{4}\)
\(\Rightarrow\frac{3}{4}\le cos^2x;cos^2y\le1\)
\(S=1+tan^2x+1+tan^2y-2=\frac{1}{cos^2x}+\frac{1}{cos^2y}-2\)
\(=\frac{7}{4cos^2x.cos^2y}-2=\frac{7}{4cos^2x\left(\frac{7}{4}-cos^2x\right)}-2=\frac{7}{-4cos^4x+7cos^2x}-2\)
Đặt \(cos^2x=t\) \(\Rightarrow\frac{3}{4}\le t\le1\)
Xét \(f\left(t\right)=-4t^2+7t\) trên \(\left[\frac{3}{4};1\right]\)
\(-\frac{b}{2a}=\frac{7}{8}\Rightarrow f\left(\frac{7}{8}\right)=\frac{49}{16}\) ; \(f\left(\frac{3}{4}\right)=3\); \(f\left(1\right)=3\)
\(\Rightarrow3\le f\left(t\right)\le\frac{49}{16}\)
\(\Rightarrow\frac{7}{\frac{49}{16}}-2\le S\le\frac{7}{3}-2\Leftrightarrow\frac{2}{7}\le S\le\frac{1}{3}\)
Không có trong đáp án?
\(\frac{1+sin2a}{1-sin2a}=\frac{sin^2a+cos^2a+2sina.cosa}{sin^2a+cos^2a-2sina.cosa}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)^2}\)
\(=\frac{\left(\sqrt{2}cos\left(a-\frac{\pi}{4}\right)\right)^2}{\left(\sqrt{2}sin\left(a-\frac{\pi}{4}\right)\right)^2}=\frac{cos^2\left(a-\frac{\pi}{4}\right)}{sin^2\left(a-\frac{\pi}{4}\right)}=cot^2\left(a-\frac{\pi}{4}\right)\)
Áp dụng bất đẳng thức Cô-si liên tục 2 lần ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}}\ge\frac{2}{\frac{\left(a+b-c\right)+\left(b+c-a\right)}{2}}=\frac{2}{\frac{2b}{2}}=\frac{2}{b}\)
Chứng minh tương tự ta cũng có :
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a};\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng theo vế của 3 bất đẳng thức trên ta được :
\(2\cdot\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Hay ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác ABC đều
Ta có: \(4!>4.3\) ; \(5!>5.4\) ;....; \(n!>n\left(n-1\right)\)
\(\Rightarrow VT=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}< 1+\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n-1\right)}\)
\(VT< 1+\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(VT< 2-\frac{1}{n}< 2\) (đpcm)