\(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 9 2020

Ta có: \(4!>4.3\) ; \(5!>5.4\) ;....; \(n!>n\left(n-1\right)\)

\(\Rightarrow VT=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}< 1+\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n-1\right)}\)

\(VT< 1+\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(VT< 2-\frac{1}{n}< 2\) (đpcm)

26 tháng 9 2020

Chưa học quy nạp thì sao bạn

26 tháng 9 2020

Phạm Dương Ngọc Nhi thế thì bạn học pp này đi. Cái pp này giúp cm nhiều bài một cách dễ dàng

NV
24 tháng 11 2019

\(1-cos^2x+1-cos^2y=\frac{1}{4}\Rightarrow cos^2x+cos^2y=\frac{7}{4}\)

\(\Rightarrow\frac{3}{4}\le cos^2x;cos^2y\le1\)

\(S=1+tan^2x+1+tan^2y-2=\frac{1}{cos^2x}+\frac{1}{cos^2y}-2\)

\(=\frac{7}{4cos^2x.cos^2y}-2=\frac{7}{4cos^2x\left(\frac{7}{4}-cos^2x\right)}-2=\frac{7}{-4cos^4x+7cos^2x}-2\)

Đặt \(cos^2x=t\) \(\Rightarrow\frac{3}{4}\le t\le1\)

Xét \(f\left(t\right)=-4t^2+7t\) trên \(\left[\frac{3}{4};1\right]\)

\(-\frac{b}{2a}=\frac{7}{8}\Rightarrow f\left(\frac{7}{8}\right)=\frac{49}{16}\) ; \(f\left(\frac{3}{4}\right)=3\); \(f\left(1\right)=3\)

\(\Rightarrow3\le f\left(t\right)\le\frac{49}{16}\)

\(\Rightarrow\frac{7}{\frac{49}{16}}-2\le S\le\frac{7}{3}-2\Leftrightarrow\frac{2}{7}\le S\le\frac{1}{3}\)

Không có trong đáp án?

NV
25 tháng 8 2020

\(\frac{1+sin2a}{1-sin2a}=\frac{sin^2a+cos^2a+2sina.cosa}{sin^2a+cos^2a-2sina.cosa}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)^2}\)

\(=\frac{\left(\sqrt{2}cos\left(a-\frac{\pi}{4}\right)\right)^2}{\left(\sqrt{2}sin\left(a-\frac{\pi}{4}\right)\right)^2}=\frac{cos^2\left(a-\frac{\pi}{4}\right)}{sin^2\left(a-\frac{\pi}{4}\right)}=cot^2\left(a-\frac{\pi}{4}\right)\)

28 tháng 7 2019

Áp dụng bất đẳng thức Cô-si liên tục 2 lần ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}}\ge\frac{2}{\frac{\left(a+b-c\right)+\left(b+c-a\right)}{2}}=\frac{2}{\frac{2b}{2}}=\frac{2}{b}\)

Chứng minh tương tự ta cũng có :

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a};\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)

Cộng theo vế của 3 bất đẳng thức trên ta được :

\(2\cdot\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Hay ta có đpcm

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác ABC đều