K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Ta có: \(a>b\)

\(\Leftrightarrow-2020a< -2020b\)(nhân hai vế của bất đẳng thức cho -2020 và đổi dấu)

\(\Leftrightarrow-2020a+2021< -2020b+2021\)(cộng hai vế của bất đẳng thức cho 2021)(đpcm)

2) Ta có: \(-2-7x>\left(3+2x\right)-\left(5-6x\right)\)

\(\Leftrightarrow-2-7x>3+2x-5+6x\)

\(\Leftrightarrow-2-7x>8x-2\)

\(\Leftrightarrow-2-7x-8x+2>0\)

\(\Leftrightarrow-15x>0\)

\(\Leftrightarrow-15x\cdot\frac{-1}{15}< 0\cdot\frac{-1}{15}\)(nhân hai vế của bất đẳng thức cho \(-\frac{1}{15}\) và đổi dấu)

hay x<0

Vậy: S={x|x<0}

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

\(\begin{array}{l}a)M = {32^{2023}} - {32^{2021}}\\M = {32^{2021}}\left( {{{32}^2} - 1} \right)\\M = {32^{2021}}.1023\end{array}\)

Vì \(1023 \vdots 31\) nên \(M = \left( {{{32}^{2021}}.1023} \right) \vdots 31\)

Vậy M chia hết cho 31.

\(\begin{array}{l}b)N = {7^6} + {2.7^3} + {8^{2022}} + 1\\N = {\left( {{7^3}} \right)^2} + {2.7^3} + 1 + {8^{2022}}\\N = {\left( {{7^3} + 1} \right)^2} + {8^{2022}}\\N = {\left( {344} \right)^2} + {8^{2022}}\\N = {\left( {8.43} \right)^2} + {8^{2022}}\\N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right)\end{array}\)

Vì \({8^2} \vdots 8\) suy ra \(N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right) \vdots 8\)

Vậy N chia hết cho 8

11 tháng 3 2017

a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3

b vì a>3 => a+2>3+2  =>a+2>5

c  vì m>n =>m-n>n-n=>m-n>0

đ vì m-n=0 =>m-n+n>0+n=>m>n

e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)

  vì -4>-5 => m-4>m-5 (2)

từ (1) và (2) =>m-5<n-4

5 tháng 5 2019

\(\frac{4}{a^2+b^2+c^2}+\frac{2021}{ab+bc+ac}=\frac{4}{a^2+b^2+c^2}+\frac{4}{ab+bc+ac}+\frac{4}{ab+bc+ac}+\frac{2013}{ab+bc+ac}\)

\(=4\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}\right)+\frac{2013}{ab+bc+ac}\)

\(\ge\frac{36}{\left(a+b+c\right)^2}+\frac{2013}{ab+bc+ac}\ge\frac{36}{\left(a+b+c\right)^2}+\frac{2013}{\frac{\left(a+b+c\right)^2}{3}}\ge4+671=675\)

\("="\Leftrightarrow a=b=c=1\)

5 tháng 5 2019

Tách thôi bạn

4 tháng 1 2021

Ta có :

( x - 1 )2\(\ge\)0 => x2 - 2x + 1 \(\ge\)0 => x2 + 1 \(\ge\)2x

Tương tự ta có : y2 + 1 \(\ge\)2y ; z2 + 1 \(\ge\)2z

=> x2 + y2 + z2 + 3 \(\ge\)2 ( x + y + z ) (1)

Lại có : ( x + y + z )2 \(\ge\)0 => x2 + y2 + z2 \(\ge\)2 ( xy + yz + zx ) (2)

Lấy (1) + (2) => 2 ( x2 + y2 + z2 ) + 3 \(\ge\)2 ( x + y + z + xy + yz + zx )

<=> 2 ( x2 + y2 + z2 ) \(\ge\)2.3033 - 3 = 6063

<=> x2 + y2 + z\(\ge\)3031,5 > 2021 ( đpcm )

NV
3 tháng 9 2020

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c\left(ab+bc+ca\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c\left(bc+ca\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\Rightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

- Với \(a=-b\Rightarrow a^{2021}=-b^{2021}\Rightarrow\left\{{}\begin{matrix}a^{2021}+b^{2021}+c^{2021}=c^{2021}\\\left(a+b+c\right)^{2021}=c^{2021}\end{matrix}\right.\)

\(\Rightarrow a^{2021}+b^{2021}+c^{2021}=\left(a+b+c\right)^{2021}\)

Hai trường hợp sau hoàn toàn tương tự

21 tháng 4 2016

a) (m+1)^2>=4m

<=>(m+1)*(m+1)>=4m

=>m2+m+m2+m>=4m

=>2m2+2m>=4m

=>2(m2+m)>=4m

xét m=0=>2(02+0)=4*0

=>2(m2+m)=4m (1)

xét m\(\ne\)0 vì m2+m=4m với mọi m

=>2(m2+m)>4m (2)

từ (1) và (2)=>(m+1)^2>=4m

8 tháng 12 2020

I don't know 😥😭😭