Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(a+b+c=6\)
\(\Leftrightarrow\left(a+b+c\right)^2=36\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=36\)
Mà \(a^2+b^2+c^2=ab+bc+ca\)
Khi đó ta có
\(3\left(ab+bc+ca\right)=36\)
\(\Leftrightarrow ab+bc+ca=12\)
\(\Leftrightarrow\hept{\begin{cases}2ab+2bc+2ca=24\\2a^2+2b^2+2c^2=24\end{cases}}\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}}\Leftrightarrow a=b=c=\frac{6}{3}=2\) ( 1 )
Thay (1) vào C ta có
\(C=\left(1-2\right)^{2021}+\left(2-1\right)^{2021}+\left(2-2\right)^{2021}\)
\(=-1+1+0=0\)
Vậy ......................
Ta có (a + b + c)3 = [(a + b) + c]3 = (a + b)3 + 3(a + b)2c + 3(a + b)c2 + c3
= a3 + b3 + 3ab(a + b) + 3(a + b)2c + 3(a + b)c2 + c3
= a3 + b3 + c3 + 3(a + b)[ab + (a + b)c + c2]
= a3 + b3 + c3 + 3(a + b)(ab + ac + bc + c2)
= a3 + b3 + c3 + 3(a + b)(b + c)(a + c)
\(\Rightarrow\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)(vì a + b + c = a3 + b3 + c3 = 1)
\(\Rightarrow\)a = -b hoặc b = -c hoặc c = -a
Khi a = -b thì c = 1
\(\Rightarrow\) A = 1
Tương tự khi b = -c thì a = 1
\(\Rightarrow\) A = 1
khi a = -c thì b = 1
\(\Rightarrow A=1\)
Vậy A = 1 trong cả 3 trường hợp trên
a + b + c = 1 ( 1 )
<=> ( a + b + c )2 = 1
Vì a + b + c = 1 => ( a + b + c )2 ( a + b + c ) = 1
<=> a3 + b3 + c3 + 3a2b + 3a2c + 3ab2 + 6abc + 3ac2 + 3b2c + 3bc2 = 1
Vì a3 + b3 + c3 = 1 => 3a2b + 3a2c + 3ab2 + 6abc + 3ac2 + 3b2c + 3bc2 = 0
<=> a2b + a2c + ab2 + 2abc + ac2 + b2c + bc2 = 0
<=> ( a + b ) ( b + c ) ( c + a ) = 0
<=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0
+) Nếu a + b = 0 => a = - b
Thay a = - b vào ( 1 ) ta được c = 1
=> a2021 + b2021 + c2021 = - b2021 + b2021 + 12021 = 1 ( đpcm )
Tương tự với 2 trường hợp còn lại ta cũng có được điều phải chứng minh
b) \(\left(a^{2019}+b^{2019}\right)^2=\left(a^{2018}+b^{2018}\right)\left(a^{2020}+b^{2020}\right)\Leftrightarrow2a^{2019}b^{2019}=a^{2018}a^{2020}+a^{2020}b^{2018}\Leftrightarrow2ab=a^2+b^2\Leftrightarrow a=b\).
Do a, b dương nên a = b = 1.
Câu a thì bạn áp dụng BĐT Svacxo
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{ab+ac+bc}{abc}\right)=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)-abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c\left(ab+ac+bc\right)-abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-b\\a=-c\\b=-c\end{matrix}\right.\)
Đến đây thì nghi ngờ bạn chép sai đề biểu thức R, lẽ ra phải là dấu nhân mới tính được, nếu ko thì kết quả vẫn còn 2 ẩn
\(R=\left(a^{2017}+b^{2017}\right)\left(b^{2019}+c^{2019}\right)\left(c^{2021}+a^{2021}\right)\)
Thế này mới chính xác, kết quả \(R=0\)
Theo đề bài ta có :
\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)
\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)
Thay \(x=1\) vào (1) ta có :
\(F\left(1\right)=-4\)
\(\Leftrightarrow1+a+b+c=-4\)
\(\Leftrightarrow a+b+c=-5\)
Thay \(x=-2\) vào (2) ta có :
\(F\left(-2\right)=5\)
\(\Leftrightarrow-8+4a-2b+c=5\)
\(\Leftrightarrow4a-2b+c=13\)
Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)
....
Dễ thấy \(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)
\(=a^3+b^3+3a^2b+3ab^2+3\left(a^2+2ab+b^2\right)c+3ac^2+3ab^2+c^3\)
\(=a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)
\(=a^3+b^3+c^3+3\left(abc+bc^2+ac^2+b^2c+a^2b+abc+a^2c+ab^2\right)\)
\(=a^3+b^3+c^3+3\left[c\left(ab+bc+ac+b^2\right)+a\left(ab+bc+ac+b^2\right)\right]\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Do \(a+b+c=2021\)nên tồn tại 2 trường hợp là 0 có số chẵn nào hoặc có 2 số chẵn
Khi đó \(\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮2\)
\(\Rightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮6\)
Có \(2021:6\) dư \(5\)\(\Rightarrow2021^3:6\)dư 5
\(\Rightarrow a^3+b^3+c^3\)chia 6 dư 5
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c\left(ab+bc+ca\right)-abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c\left(bc+ca\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\Rightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
- Với \(a=-b\Rightarrow a^{2021}=-b^{2021}\Rightarrow\left\{{}\begin{matrix}a^{2021}+b^{2021}+c^{2021}=c^{2021}\\\left(a+b+c\right)^{2021}=c^{2021}\end{matrix}\right.\)
\(\Rightarrow a^{2021}+b^{2021}+c^{2021}=\left(a+b+c\right)^{2021}\)
Hai trường hợp sau hoàn toàn tương tự