Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3+y3+z3-3xyz
=(x+y)3+z3-3x2y-3xy2-3xyz
=(x+y+z).[(x+y)2+(x+y).z+z2]-3xy.(x+y+z)
=(x+y+z)(x2+2xy+y2+zx+zy+z2)-3xy.(x+y+z)
=(x+y+z)(x2+2xy+y2+zx+zy+z2-3xy)
=(x+y+z)(x2+y2+zx+zy+z2-zy)
b)a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2a-c2b
=(a2b-c2b)+(-a2c+c2a)+(b2c-b2a)
=b.(a2-c2)-ac.(a-c)-b2.(a-c)
=b.(a+c)(a-c)-ac.(a-c)-b2.(a-c)
=(a-c)[b.(a+c)-ac-b2]
=(a-c)(ab+bc-ac-b2)
=(a-c)[(ab-ac)+(bc-b2)]
=(a-c)[a.(b-c)-b.(b-c)]
=(a-c)(b-c)(a-b)
a/x +b/y +c/z =0 ->ayz+bxz+cxz=0
x/a + y/b + z/c=1 ->(x/a +y/b +z/c)^2=1
x^2/a^2 + y^2/b^2 + z^2/c^2 +2(xy/ab +yz/bc +xz/ac)=1
x^2/a^2 + y^2/b^2 + z^2/c^2 =1- 2* ayz+bxz+cxz/abc=1-2*0=1-0=1 =>ĐPCM
k hộ mik nha
#)Giải :
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1-2\frac{ayz+bxz+cxy}{abc}=1-2.0=1\left(đpcm\right)\)
#~Will~be~Pens~#
a + b + c = 1 ( 1 )
<=> ( a + b + c )2 = 1
Vì a + b + c = 1 => ( a + b + c )2 ( a + b + c ) = 1
<=> a3 + b3 + c3 + 3a2b + 3a2c + 3ab2 + 6abc + 3ac2 + 3b2c + 3bc2 = 1
Vì a3 + b3 + c3 = 1 => 3a2b + 3a2c + 3ab2 + 6abc + 3ac2 + 3b2c + 3bc2 = 0
<=> a2b + a2c + ab2 + 2abc + ac2 + b2c + bc2 = 0
<=> ( a + b ) ( b + c ) ( c + a ) = 0
<=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0
+) Nếu a + b = 0 => a = - b
Thay a = - b vào ( 1 ) ta được c = 1
=> a2021 + b2021 + c2021 = - b2021 + b2021 + 12021 = 1 ( đpcm )
Tương tự với 2 trường hợp còn lại ta cũng có được điều phải chứng minh
Câu 1
5x2 + 10y2 - 6xy - 4x - 2y + 3
= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1
= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
Câu 2
a) A = 2011.2013 = ( 2012 - 1 )( 2012 + 1 ) = 20122 - 1 < 20122
=> A < B
B = 3128 - 1
= ( 364 - 1 )( 364 + 1 )
= ( 332 - 1 )( 332 + 1 )( 364 + 1 )
= ( 316 - 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= ( 34 - 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= ( 32 - 1 )( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= ( 3 - 1 )( 3 + 1 )( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= 8( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 ) > 4( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
=> B > A
Ta có (a + b + c)3 = [(a + b) + c]3 = (a + b)3 + 3(a + b)2c + 3(a + b)c2 + c3
= a3 + b3 + 3ab(a + b) + 3(a + b)2c + 3(a + b)c2 + c3
= a3 + b3 + c3 + 3(a + b)[ab + (a + b)c + c2]
= a3 + b3 + c3 + 3(a + b)(ab + ac + bc + c2)
= a3 + b3 + c3 + 3(a + b)(b + c)(a + c)
\(\Rightarrow\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)(vì a + b + c = a3 + b3 + c3 = 1)
\(\Rightarrow\)a = -b hoặc b = -c hoặc c = -a
Khi a = -b thì c = 1
\(\Rightarrow\) A = 1
Tương tự khi b = -c thì a = 1
\(\Rightarrow\) A = 1
khi a = -c thì b = 1
\(\Rightarrow A=1\)
Vậy A = 1 trong cả 3 trường hợp trên